Difference scheme on an uniform mesh for a singularly perturbed Cauchy problem
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 114-122
Voir la notice de l'article provenant de la source Math-Net.Ru
Cauchy problem for a singularly perturbed second order ordinary differential equation is considered. On a base of introduced maximum principle for a Cauchy problem the solution and its derivateves are estimated. Exponential fitted scheme, generalized well-known Il'in scheme for a case of an initial value problem, is constructed. The uniform convergence of constructed scheme with the first order of an accuracy is proved. Numerical results are discussed.
Keywords:
second order ordinary differential equation, Cauchy problem, difference scheme, maximum principle, exponential fitted scheme
Mots-clés : singular perturbation, uniform convergence.
Mots-clés : singular perturbation, uniform convergence.
@article{VNGU_2011_11_3_a7,
author = {A. I. Zadorin and S. V. Tihovskaya},
title = {Difference scheme on an uniform mesh for a singularly perturbed {Cauchy} problem},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {114--122},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a7/}
}
TY - JOUR AU - A. I. Zadorin AU - S. V. Tihovskaya TI - Difference scheme on an uniform mesh for a singularly perturbed Cauchy problem JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2011 SP - 114 EP - 122 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a7/ LA - ru ID - VNGU_2011_11_3_a7 ER -
%0 Journal Article %A A. I. Zadorin %A S. V. Tihovskaya %T Difference scheme on an uniform mesh for a singularly perturbed Cauchy problem %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2011 %P 114-122 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a7/ %G ru %F VNGU_2011_11_3_a7
A. I. Zadorin; S. V. Tihovskaya. Difference scheme on an uniform mesh for a singularly perturbed Cauchy problem. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 114-122. http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a7/