Minimal Elements and Minimal Covers in Rogers Semilattice of Computable Numberings in Hyperarithmetical Hierarchy
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 77-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Proved that Rogers semilattice of any infinite $\Sigma_{\omega}$-computable family contains infinitely many minimal elements, and each non-$0'$-universal numbering has infinitely many minimal covers.
Keywords: numbering, Rogers semilattice, hyperarithmetical hierarchy, minimal elements, minimal covers.
@article{VNGU_2011_11_3_a4,
     author = {N. A. Baklanova},
     title = {Minimal {Elements} and {Minimal} {Covers} in {Rogers} {Semilattice} of {Computable} {Numberings} in {Hyperarithmetical} {Hierarchy}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {77--84},
     year = {2011},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a4/}
}
TY  - JOUR
AU  - N. A. Baklanova
TI  - Minimal Elements and Minimal Covers in Rogers Semilattice of Computable Numberings in Hyperarithmetical Hierarchy
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 77
EP  - 84
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a4/
LA  - ru
ID  - VNGU_2011_11_3_a4
ER  - 
%0 Journal Article
%A N. A. Baklanova
%T Minimal Elements and Minimal Covers in Rogers Semilattice of Computable Numberings in Hyperarithmetical Hierarchy
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 77-84
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a4/
%G ru
%F VNGU_2011_11_3_a4
N. A. Baklanova. Minimal Elements and Minimal Covers in Rogers Semilattice of Computable Numberings in Hyperarithmetical Hierarchy. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 77-84. http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a4/

[1] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977 | MR

[2] Badaev S. A., Goncharov S. S., “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl

[3] Goncharov S. S., Sorbi A., “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[4] Badaev S., Goncharov S., Podzorov S., Sorbi A., “Algebraic Properties of Rogers Semilattices of Arithmetical Numberings”, Completeness and Universality of Arithmetical Numberings, Computability and Models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Plenum Publishers, N.Y., 2003, 45–77 | DOI | MR

[5] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[6] Ash C. J., Knight J. F., Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam, 2000

[7] Goncharov S. S., “O chisle neavtoekvivalentnykh konstruktivizatsii”, Algebra i logika, 16:3 (1977), 257–282 | MR | Zbl

[8] Badaev S., Goncharov S., Sorbi A., Completeness and Universality of Arithmetical Numberings, Computability and Models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Plenum Publishers, N.Y., 2003, 11–44 | DOI | MR