Equilibrium Resource Distribution in a Model of Group Interaction
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 61-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a distributed system represented by weighted bipartite graph $G=(I\cup J, \mathcal{E})$. Each vertex $i\in I$ (agent $i$) possesses a certain amount of resource and distributes it among adjacent vertices $j\in J$ (fields of interaction). Agent $i$ evaluates the efficiency of allocation of its resource in the field $j$ according to value of given function $c_{ij}(x_{ij},\hat{X}_{j})$. Here $x_{ij}$ is the quantity of resource assigned to $j$ by $i$ and $\hat{X}_j$ is the total amount of resources allocated in $j$ by all the adjacent agents. A feasible distribution of resources is called equilibrium distribution, if the following condition is satisfied: $c_{ij}(x_{ij}, \hat{X}_j)=c_i$ for each $(i,j)\in\mathcal{E}$. In this paper we consider the problem of existence of equilibrium resource distributions in systems with linear functions $c_{ij}$ and represented by different kinds of graphs. We formulate sufficient conditions for the existence of equilibriums and obtain explicit expressions to compute these distributions.
Mots-clés : group interaction
Keywords: equilibrium, distributed network.
@article{VNGU_2011_11_3_a3,
     author = {S. N. Astrakov and I. I. Takhonov},
     title = {Equilibrium {Resource} {Distribution} in a {Model} of {Group} {Interaction}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {61--76},
     year = {2011},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a3/}
}
TY  - JOUR
AU  - S. N. Astrakov
AU  - I. I. Takhonov
TI  - Equilibrium Resource Distribution in a Model of Group Interaction
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 61
EP  - 76
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a3/
LA  - ru
ID  - VNGU_2011_11_3_a3
ER  - 
%0 Journal Article
%A S. N. Astrakov
%A I. I. Takhonov
%T Equilibrium Resource Distribution in a Model of Group Interaction
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 61-76
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a3/
%G ru
%F VNGU_2011_11_3_a3
S. N. Astrakov; I. I. Takhonov. Equilibrium Resource Distribution in a Model of Group Interaction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 61-76. http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a3/

[1] Erzin A. I., Takhonov I. I., “Ravnovesnoe raspredelenie resursov setevoi modeli”, Sib. zhurn. industr. mat., 8:3(23) (2005), 58–68 | Zbl

[2] Astrakov S. N., Erzin A. I., “Odna model samoreguliruyuscheisya sistemy”, Matematicheskie struktury i modelirovanie, 2004, no. 13, 30–38

[3] Astrakov S. N., Erzin A. I., “Modelirovanie ustoichivykh vzaimootnoshenii na grafakh”, Metody optimizatsii i ikh prilozheniya, Materialy 13-i Baikalskoi shkoly-seminara, v. 1, Irkutsk, 2005, 413–420

[4] Erzin A. I., Takhonov I. I., “Zadacha poiska sbalansirovannogo potoka v seti”, Sib. zhurn. industr. mat., 9:4(28) (2006), 50–63 | Zbl

[5] Khakimi S. L., “O realizuemosti mnozhestva tselykh chisel stepenyami vershin grafa”, Sb. nauch. st., Kibernetika. Novaya seriya, 2, Mir, M., 1966, 40–53

[6] Makeev S. P., “O realizuemosti vzveshennykh grafov s zadannymi vesami vershin”, Upravlyaemye sistemy, 13, Novosibirsk, 1993, 40–52

[7] Adamidou E. A., Kornhauser A. L., Koskosidis Y. A., “A Game Theoretic / Network Equilibrium Solution Approach for the Railroad Freight Car Management Problem”, Transportation Research. Part B: Methodological, 27:3 (1993), 237–252 | DOI

[8] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[9] Kharari F., Teoriya grafov, Mir, M., 1973 | MR

[10] Garey M. R., Johnson D. S., Computers and Intractability. A Guide to the Theory of $NP$-Completeness, W. H. Freeman and Co., San Francisco, 1979 | MR | Zbl