Equilibrium Resource Distribution in a Model of Group Interaction
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 61-76
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a distributed system
represented by weighted bipartite graph $G=(I\cup J, \mathcal{E})$.
Each vertex $i\in I$ (agent $i$) possesses a certain amount of
resource and distributes it among adjacent vertices $j\in J$
(fields of interaction). Agent $i$ evaluates the efficiency of
allocation of its resource in the field $j$ according to value of
given function $c_{ij}(x_{ij},\hat{X}_{j})$. Here $x_{ij}$ is the
quantity of resource assigned to $j$ by $i$ and $\hat{X}_j$ is the
total amount of resources allocated in $j$ by all the adjacent
agents. A feasible distribution of resources is called
equilibrium distribution, if the following condition is
satisfied: $c_{ij}(x_{ij}, \hat{X}_j)=c_i$ for each
$(i,j)\in\mathcal{E}$.
In this paper we consider the problem of existence of equilibrium
resource distributions in systems with linear functions $c_{ij}$
and represented by different kinds of graphs. We formulate
sufficient conditions for the existence of equilibriums and obtain explicit expressions to compute these distributions.
Mots-clés :
group interaction
Keywords: equilibrium, distributed network.
Keywords: equilibrium, distributed network.
@article{VNGU_2011_11_3_a3,
author = {S. N. Astrakov and I. I. Takhonov},
title = {Equilibrium {Resource} {Distribution} in a {Model} of {Group} {Interaction}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {61--76},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a3/}
}
TY - JOUR AU - S. N. Astrakov AU - I. I. Takhonov TI - Equilibrium Resource Distribution in a Model of Group Interaction JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2011 SP - 61 EP - 76 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a3/ LA - ru ID - VNGU_2011_11_3_a3 ER -
S. N. Astrakov; I. I. Takhonov. Equilibrium Resource Distribution in a Model of Group Interaction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 61-76. http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a3/