2D step-by-step model of hydrofracturing
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 36-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The 2D model of hydraulic fracture propagation is proposed. The model describes simultaneously stress-strained state of the rock near bore hole and fracture, fluid flow and leakage in the fracture and direction of fracture propagation. Effective numerical algorithm for step-by-step simulation of the hydraulic fracture propagation is built. The algorithm joins together these three different subproblems. Analysis of the influence of model parameters on the solution is carried out. The dependences of fracture trajectory, pressure and fracture opening on configuration of perforations, pump rate and fluids rheology are obtained. It is established that the strong fracture trajectory deformation, caused by the deviation of perforation from the direction across the smallest in-situ principal stress, leads to fracture pinching. Theis effect considerably increases pressure in the bore hole.
Keywords: hydrofracturing, non-Newtonian fluid, nonlinear problem.
Mots-clés : fracture propagation
@article{VNGU_2011_11_3_a2,
     author = {O. P. Alekseenko and D. V. Esipov and D. S. Kuranakov and V. N. Lapin and S. G. Cherny},
     title = {2D step-by-step model of hydrofracturing},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {36--60},
     year = {2011},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a2/}
}
TY  - JOUR
AU  - O. P. Alekseenko
AU  - D. V. Esipov
AU  - D. S. Kuranakov
AU  - V. N. Lapin
AU  - S. G. Cherny
TI  - 2D step-by-step model of hydrofracturing
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 36
EP  - 60
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a2/
LA  - ru
ID  - VNGU_2011_11_3_a2
ER  - 
%0 Journal Article
%A O. P. Alekseenko
%A D. V. Esipov
%A D. S. Kuranakov
%A V. N. Lapin
%A S. G. Cherny
%T 2D step-by-step model of hydrofracturing
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 36-60
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a2/
%G ru
%F VNGU_2011_11_3_a2
O. P. Alekseenko; D. V. Esipov; D. S. Kuranakov; V. N. Lapin; S. G. Cherny. 2D step-by-step model of hydrofracturing. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 36-60. http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a2/

[1] Ibragimov L. Kh., Mischenko I. T., Cheloyants D. K., Intensifikatsiya dobychi nefti, Nauka, M., 2000

[2] Zheltov Yu. P., Khristianovich S. A., “O gidravlicheskom razryve neftenosnogo plasta”, Izv. AN SSSR, Otdel tekhnicheskikh nauk, 1955, no. 5, 3–41

[3] Khristianovic S. A., Zheltov Y. P., “Formation of Vertical Fractures by Means of Higly Viscous Liquid”, Proc. of the Fourth World Petroleum Congress, Section II (Rome, 1955), 579–586

[4] Geertsma J., De Klerk F., “A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures”, J. of Petroleum Technology, 21:12 (1969), 1571–1581

[5] Cherny S., Chirkov D., Lapin V., Muranov A., Bannikov D., Willberg D., Medvedev O., Alekseenko O., “Two-Dimensional Modeling of the Near-Wellbore Fracture Tortuosity Effect”, Int. J. of Rock Mechanics Mining Sciences, 46 (2009), 992–1000 | DOI

[6] Cherny S. G., Lapin V. N., Chirkov D. V., “2D Modeling of Hydraulic Fracture Initiating at a Wellbore with or without Microannulus”, Paper SPE, 2009, 119352

[7] Kupradze V. D., Metody teorii potentsiala v teorii uprugosti, Nauka, M., 1963

[8] Rizzo F. J., “An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics”, Quart. J. of Applied Mathematics, 25 (1967), 83–95 | Zbl

[9] Brebbiya K., Telles Zh., Vroubel L., Metody granichnykh elementov, Mir, M., 1987 | MR

[10] Benerdzhi P., Batterfild R., Metody granichnykh elementov v prikladnykh naukakh, Per. s angl., Mir, M., 1984 | MR

[11] Cruse T. A., Boundary Element Analysis in Computational Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, 1988 | MR | Zbl

[12] Cruse T. A., “Application of the Boundary-Integral Equation Method to Three Dimensional Stress Analysis”, Computers and Structures, 3 (1973), 509–527 | DOI

[13] Crouch S. L., “Solution of Plane Elasticity Problems by the Displacement Discontinuity Method”, Int. J. for Numerical Methods in Engineering, 10 (1976), 301–343 | DOI | MR | Zbl

[14] Krauch S., Starfild A., Metody granichnykh elementov v mekhanike tverdogo tela, Mir, M., 1987 | MR

[15] Portela A., Aliabadi M. H., Rooke D. P., “The Dual Boundary Element Method: Efficient Implementation for Cracked Problems”, Int. J. for Numerical Methods in Engineering, 32 (1991), 445–470 | DOI | Zbl

[16] Timoshenko S. P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1975

[17] Amenzade Yu. A., Teoriya uprugosti, Uchebnik dlya universitetov, Vyssh. shkola, M., 1971 | MR | Zbl

[18] Chen J.-T., Kuo S.-R., Chen W.-C., Liu L.-W., “On the Free Term of the Dual BEM for the Two and Three-Dimensional Laplace Problems”, J. of Marine Science and Technology, 8:1 (2000), 8–15

[19] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1970 | MR

[20] Carter R. D., “Appendix I. Derivation of the General Equation for Estimating the Extent of the Fractured Area”, Drilling and Production Practice, eds. G. C. Howard, C. R. Fast, N.Y., 1957, 261–270

[21] Settari A., “A New General Model of Fluid Loss in Hydraulic Fracturing”, Society of Petroleum Engineers J., 25:4 (1985), 491–501

[22] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974 | Zbl

[23] Rooke D.Ṗ., Cartwright D. J., Compendium of Stress Intensity Factors, Procurement Executive, Ministry of Defence H. M. S. O., L., 1976

[24] Smith R. N. L., “The Solution of Mixed-Mode Fracture Problems Using the Boundary Element Method”, Engineering Analysis with Boundary Elements, 5 (1988), 75–80 | DOI

[25] Aliabadi M. H., “Evaluation of Mixed Mode Stress Intensity Factors Using Path Independent Integral”, Proc. $12^\text{th}$ Int. Conf. on Boundary Elements Method, Computational Mechanics Publications, Southhampton, 1990, 281–292

[26] Cherepanov G. P., “O rasprostranenii treschin v sploshnoi srede”, Prikladnaya matematika i mekhanika, 31:3 (1967), 476–488 | Zbl

[27] Rice J. R., “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks”, J. of Applied Mechanics, 35 (1968), 379–386 | DOI

[28] Ishikawa H., Kitagawa H., Okamura H., “$J$-integral of mixed mode crack and its application”, Proc. of $3^\text{rd}$ Int. Conf. on Mehanical Behavior of Materials, v. 3, Pergamon press, Oxford, 1980, 447–455

[29] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2000

[30] Levenberg K., “A Method for the Solution of Certain Non-Linear Problems in Least Squares”, The Quart. J. of Applied Mathematics, 2 (1944), 164–168 | MR | Zbl

[31] Marquardt D., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, SIAM J. on Applied Mathematics, 11:2 (1963), 431–441 | DOI | MR | Zbl