On a Special Optimum Control Mode at Some Perturbation of the Production Function
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 105-118
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the majority of the previous works, which used the methods of optimal control, concave production functions only were considered. Production functions are exposed to various perturbations in real economics. They are caused by the objective reasons which are impossible to predict in advance. In this work we investigate the problem of a distribution of incomes of a production between the consumption and the investments, when incomes are modelled by pertubed production functions. A priori it was impossible to assume, that at the perturbation case there is a mathematical substantiation of an optimum level of the production control. We proved the turnpike theorem which determines an optimum value of the share of investments. Thus, in the case of quasi-neoclassic production functions we demonstrated the existence of the special optimum control mode.
Keywords: perturbated production function, dynamic model, admissible trajectories, special optimum control mode, turnpike theorem, quasi-neoclassic function, rule of the accumulation, investments, consumption.
@article{VNGU_2011_11_2_a9,
     author = {A. E. Trubacheva},
     title = {On a {Special} {Optimum} {Control} {Mode} at {Some} {Perturbation} of the {Production} {Function}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {105--118},
     year = {2011},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a9/}
}
TY  - JOUR
AU  - A. E. Trubacheva
TI  - On a Special Optimum Control Mode at Some Perturbation of the Production Function
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 105
EP  - 118
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a9/
LA  - ru
ID  - VNGU_2011_11_2_a9
ER  - 
%0 Journal Article
%A A. E. Trubacheva
%T On a Special Optimum Control Mode at Some Perturbation of the Production Function
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 105-118
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a9/
%G ru
%F VNGU_2011_11_2_a9
A. E. Trubacheva. On a Special Optimum Control Mode at Some Perturbation of the Production Function. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 105-118. http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a9/

[1] Golub A., “Faktory rosta rossiiskoi ekonomiki i perspektivy tekhnicheskogo obnovleniya”, Voprosy ekonomiki, 2004, no. 5, 44–58

[2] Dementev N. P., “Modeli ekonomicheskogo rosta s klassovoi differentsiatsiei sberezhenii”, Sistemnoe issledovanie ekonomicheskikh protsessov v Rossii, Sb. nauch. tr., Novosibirsk, 2004, 51–74

[3] Egorova N. E., Khachatryan S. R., “Primenenie differentsialnykh uravnenii dlya analiza dinamiki razvitiya malykh predpriyatii, ispolzuyuschikh kreditno-investitsionnye resursy”, Ekonomika i mat. metody, 42:1 (2006), 50–67 | MR | Zbl

[4] Petrov A. A., Shananin A. A., “Matematicheskaya model dlya otsenki effektivnosti odnogo stsenariya ekonomicheskogo rosta”, Matematicheskoe modelirovanie, 14:7 (2002), 27–52 | Zbl

[5] Trubacheva A. E., “Vliyanie vozmuscheniya proizvodstvennoi funktsii na povedenie investora”, Sib. zhurn. industr. matematiki, 7:3(19) (2004), 156–169 | MR | Zbl

[6] Trubacheva A. E., Issledovanie povedeniya investora pri razlichnykh skhemakh nalogooblozheniya i raznykh vidakh proizvodstvennoi funktsii, Preprint IM SO RAN, No 153, 2005

[7] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[8] Lyapidevskii V. Yu., Lyulko N. A., Maksimova O. D., Funktsionalnyi analiz, Ucheb. posobie, Novosibirsk, 1998 | Zbl

[9] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR | Zbl

[10] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973 | MR

[11] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[12] Gabasov R., Kirillova F. M., Printsip maksimuma v teorii optimalnogo upravleniya, Nauka i tekhnika, Minsk, 1974 | MR

[13] Ashmanov S. A., Vvedenie v matematicheskuyu ekonomiku, Nauka, M., 1984 | MR | Zbl

[14] Stepanov V. V., Kurs differentsialnykh uravnenii, KomKniga, M., 2006