On Two Problems in the Theory of Unique Determination of Domains
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 93-104

Voir la notice de l'article provenant de la source Math-Net.Ru

The estimates of the absolute and relative conformal moduli of the boundary capacitor with two parallel segments as its plates are given in the first part of this paper. The second one is devoted to a proof of the theorem which states that convexity of a plane domain $U$ with a smooth boundary doesn't lead, generally speaking, to a unique determination of $U$ in the class of all plane domains with smooth boundaries by the local isometry condition of boundaries in their relative metrics.
Mots-clés : conformal modulus, unique determination of domains
Keywords: boundary capacitor, local isometry of boundaries in their relative metrics.
@article{VNGU_2011_11_2_a8,
     author = {D. A. Slutskiy},
     title = {On {Two} {Problems} in the {Theory} of {Unique} {Determination} of {Domains}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a8/}
}
TY  - JOUR
AU  - D. A. Slutskiy
TI  - On Two Problems in the Theory of Unique Determination of Domains
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 93
EP  - 104
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a8/
LA  - ru
ID  - VNGU_2011_11_2_a8
ER  - 
%0 Journal Article
%A D. A. Slutskiy
%T On Two Problems in the Theory of Unique Determination of Domains
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 93-104
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a8/
%G ru
%F VNGU_2011_11_2_a8
D. A. Slutskiy. On Two Problems in the Theory of Unique Determination of Domains. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 93-104. http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a8/