Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 77-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a variational problem of minimizing energy functional of an elastic isotropic plate with a crack. On the curve describing the crack we impose boundary conditions prohibiting mutual penetration of the crack edges. Boundary conditions introduced are inequalities which define a non-convex set of admissible displacement functions. We prove the existence of the solution for this variational problem and establish that sufficiently smooth solutions satisfy boundary condition on the crack curve. For the problem with a given angle of curving of one of edges, the equivalence of variational and differential forms of problem is established.
Keywords: Kirchhoff–Love plate, crack, nonlinear boundary conditions, variational inequality, contact problem.
@article{VNGU_2011_11_2_a6,
     author = {N. P. Lazarev and T. S. Popova},
     title = {Variational {Equilibrium} {Problem} for a {Plate} with a {Vertical} {Crack} with {a~Geometrically} {Nonlinear} {Nonpenetration} {Condition}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {77--88},
     year = {2011},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a6/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - T. S. Popova
TI  - Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 77
EP  - 88
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a6/
LA  - ru
ID  - VNGU_2011_11_2_a6
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A T. S. Popova
%T Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 77-88
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a6/
%G ru
%F VNGU_2011_11_2_a6
N. P. Lazarev; T. S. Popova. Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 77-88. http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a6/

[1] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verlag, Basel–Boston–Berlin, 1997 | MR | Zbl

[2] Rudoi E. M., “Ravnovesie vyazko-uprugoi plastiny, imeyuschei vertikalnuyu treschinu”, Matematicheskie problemy mekhaniki sploshnykh sred, Tez. dokl., Novosibirsk, 1997

[3] Popova T. S., “O regulyarnosti resheniya zadachi ravnovesiya dlya plastiny s treschinoi”, Matematicheskie zametki YaGU, 3:2 (1996), 124–132 | MR | Zbl

[4] Bach M., Khludnev A. M., Kovtunenko V. A., “Derivatives of the Energy Functional for 2D-Problem with a Crack under Signorini and Friction Condition”, Math. Mech. in Appl. Sciences, 23 (2000), 515–524 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[5] Khludnev A. M., Zadacha o treschine na granitse zhestkogo vklyucheniya v uprugoi plastine, Preprint RAN, No 1-09, Sib. otd-nie. In-t gidrodinamiki, Novosibirsk, 2009

[6] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972

[7] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[8] Kovtunenko V. A., Leontev A. N., Khludnev A. M., “Zadacha o ravnovesii plastiny s naklonnym razrezom”, PMTF, 39:2 (1998), 164–174 | MR | Zbl

[9] Lazarev N. P., “Differentsirovanie funktsionala energii v zadache o ravnovesii plastiny, soderzhaschei naklonnuyu treschinu”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 3:2 (2003), 62–73

[10] Rudoi E. M., “Formula Griffitsa dlya plastiny s treschinoi”, Sib. zhurn. industr. mat., 5 (2002), 155–161 | MR

[11] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974