@article{VNGU_2011_11_2_a6,
author = {N. P. Lazarev and T. S. Popova},
title = {Variational {Equilibrium} {Problem} for a {Plate} with a {Vertical} {Crack} with {a~Geometrically} {Nonlinear} {Nonpenetration} {Condition}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {77--88},
year = {2011},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a6/}
}
TY - JOUR AU - N. P. Lazarev AU - T. S. Popova TI - Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2011 SP - 77 EP - 88 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a6/ LA - ru ID - VNGU_2011_11_2_a6 ER -
%0 Journal Article %A N. P. Lazarev %A T. S. Popova %T Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2011 %P 77-88 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a6/ %G ru %F VNGU_2011_11_2_a6
N. P. Lazarev; T. S. Popova. Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 77-88. http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a6/
[1] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verlag, Basel–Boston–Berlin, 1997 | MR | Zbl
[2] Rudoi E. M., “Ravnovesie vyazko-uprugoi plastiny, imeyuschei vertikalnuyu treschinu”, Matematicheskie problemy mekhaniki sploshnykh sred, Tez. dokl., Novosibirsk, 1997
[3] Popova T. S., “O regulyarnosti resheniya zadachi ravnovesiya dlya plastiny s treschinoi”, Matematicheskie zametki YaGU, 3:2 (1996), 124–132 | MR | Zbl
[4] Bach M., Khludnev A. M., Kovtunenko V. A., “Derivatives of the Energy Functional for 2D-Problem with a Crack under Signorini and Friction Condition”, Math. Mech. in Appl. Sciences, 23 (2000), 515–524 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[5] Khludnev A. M., Zadacha o treschine na granitse zhestkogo vklyucheniya v uprugoi plastine, Preprint RAN, No 1-09, Sib. otd-nie. In-t gidrodinamiki, Novosibirsk, 2009
[6] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972
[7] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000
[8] Kovtunenko V. A., Leontev A. N., Khludnev A. M., “Zadacha o ravnovesii plastiny s naklonnym razrezom”, PMTF, 39:2 (1998), 164–174 | MR | Zbl
[9] Lazarev N. P., “Differentsirovanie funktsionala energii v zadache o ravnovesii plastiny, soderzhaschei naklonnuyu treschinu”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 3:2 (2003), 62–73
[10] Rudoi E. M., “Formula Griffitsa dlya plastiny s treschinoi”, Sib. zhurn. industr. mat., 5 (2002), 155–161 | MR
[11] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974