The Number of Primitive Elements of the First and Second Degree of Free Non-associative Algebras over the Finite Field
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 119-122
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $F_q$ be a finite field, $X=\{x_1,\ldots,x_n\}$ a set of free generators. Criteria for an element of the free non-associative algebra $F_q(X)$ to be primitive is obtained. Let $l$ be the degree of a primitive element. The number of primitive elements for $n = 1, 2$ and $l = 1, 2$ is found.
Keywords: free non-associative algebras, automorphisms of free algebras.
@article{VNGU_2011_11_2_a10,
     author = {A. A. Chepovskiy},
     title = {The {Number} of {Primitive} {Elements} of the {First} and {Second} {Degree} of {Free} {Non-associative} {Algebras} over the {Finite} {Field}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {119--122},
     year = {2011},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a10/}
}
TY  - JOUR
AU  - A. A. Chepovskiy
TI  - The Number of Primitive Elements of the First and Second Degree of Free Non-associative Algebras over the Finite Field
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 119
EP  - 122
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a10/
LA  - ru
ID  - VNGU_2011_11_2_a10
ER  - 
%0 Journal Article
%A A. A. Chepovskiy
%T The Number of Primitive Elements of the First and Second Degree of Free Non-associative Algebras over the Finite Field
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 119-122
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a10/
%G ru
%F VNGU_2011_11_2_a10
A. A. Chepovskiy. The Number of Primitive Elements of the First and Second Degree of Free Non-associative Algebras over the Finite Field. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 119-122. http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a10/

[1] Kurosh A. G., “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Mat. sb., 20 (1947), 239–262 | MR | Zbl

[2] Lewin J., “On Schreier Varieties of Linear Algebras”, Trans. Amer. Math. Soc., 132 (1968), 553–562 | DOI | MR | Zbl

[3] Artamonov V. A., Mikhalev A. A., Mikhalev A. V., “Avtomorfizmy svobodnykh algebr shraierovykh mnogoobrazii”, Sovremennye problemy matematiki i mekhaniki. Matematika, 4:3 (2009), 39–57

[4] Mikhalev A. A., Shpilrain V., Yu J.-T., Combinatorial Methods. Free Groups, Polynomials, and Free Algebras, Springer, N.Y., 2004 | MR

[5] Mikhalev A. A., Umirbaev U. U., Yu J.-T., “Automorphic Orbits of Elements of Free Non-Associative Algebras”, J. Algebra, 243 (2001), 198–223 | DOI | MR | Zbl

[6] Mikhalev A. A., Mikhalev A. V., Chepovskii A. A., Shampaner K., “Primitivnye elementy svobodnykh neassotsiativnykh algebr”, Fundamentalnaya i prikladnaya matematika, 13:5 (2007), 171–192

[7] Shampaner K., “Algoritmy realizatsii ranga i primitivnosti sistem elementov svobodnykh neassotsiativnykh algebr”, Fundamentalnaya i prikladnaya matematika, 6:4 (2000), 1229–1238 | MR