The Number of Primitive Elements of the First and Second Degree of Free Non-associative Algebras over the Finite Field
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 119-122
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F_q$ be a finite field, $X=\{x_1,\ldots,x_n\}$ a set of free generators. Criteria for an element of the free non-associative algebra $F_q(X)$ to be primitive is obtained. Let $l$ be the degree of a primitive element. The number of primitive elements for $n = 1, 2$ and $l = 1, 2$ is found.
Keywords:
free non-associative algebras, automorphisms of free algebras.
@article{VNGU_2011_11_2_a10,
author = {A. A. Chepovskiy},
title = {The {Number} of {Primitive} {Elements} of the {First} and {Second} {Degree} of {Free} {Non-associative} {Algebras} over the {Finite} {Field}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {119--122},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a10/}
}
TY - JOUR AU - A. A. Chepovskiy TI - The Number of Primitive Elements of the First and Second Degree of Free Non-associative Algebras over the Finite Field JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2011 SP - 119 EP - 122 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a10/ LA - ru ID - VNGU_2011_11_2_a10 ER -
%0 Journal Article %A A. A. Chepovskiy %T The Number of Primitive Elements of the First and Second Degree of Free Non-associative Algebras over the Finite Field %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2011 %P 119-122 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a10/ %G ru %F VNGU_2011_11_2_a10
A. A. Chepovskiy. The Number of Primitive Elements of the First and Second Degree of Free Non-associative Algebras over the Finite Field. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 2, pp. 119-122. http://geodesic.mathdoc.fr/item/VNGU_2011_11_2_a10/