The Unilateral Contact Problem for Two Plates One of them Containing a~Rigid Inclusion
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 1, pp. 87-98
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the unilateral contact problem for two elastic plates located at a given angle to each other. One of the plates contains a rigid inclusion and is deformed in its plane with the other one being vertically deformed. Assuming that the solution is smooth, the differential statement being equivalent to the variational formulation is justified. We analyse different configurations of the rigid inclusion. The problem with rigid inclusion is shown to be obtained as the limiting one of the family of elastic problems.
Keywords:
contact problem, variational inequality, rigid inclusion, elastic plates.
@article{VNGU_2011_11_1_a8,
author = {T. A. Rotanova},
title = {The {Unilateral} {Contact} {Problem} for {Two} {Plates} {One} of them {Containing} {a~Rigid} {Inclusion}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {87--98},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a8/}
}
TY - JOUR AU - T. A. Rotanova TI - The Unilateral Contact Problem for Two Plates One of them Containing a~Rigid Inclusion JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2011 SP - 87 EP - 98 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a8/ LA - ru ID - VNGU_2011_11_1_a8 ER -
T. A. Rotanova. The Unilateral Contact Problem for Two Plates One of them Containing a~Rigid Inclusion. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 1, pp. 87-98. http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a8/