Dynamics of System of Frequency-Phase Autofrequency Trim by Filters of the First Order
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 1, pp. 70-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mathematical model of system of frequency-phase auto fine tuning by filters of the first order in management chains is investigated. Criteria global stability and conditions of existence of a limiting cycle of the second sort are received. On an example of system with factors of transfer of filters of the bottom frequencies of the first order influence of a frequency ring on global stability is shown.
Mots-clés : synchronisation modes
Keywords: limiting cycles, automatic frequency control.
@article{VNGU_2011_11_1_a6,
     author = {S. S. Mamonov},
     title = {Dynamics of {System} of {Frequency-Phase} {Autofrequency} {Trim} by {Filters} of~the {First} {Order}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {70--81},
     year = {2011},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a6/}
}
TY  - JOUR
AU  - S. S. Mamonov
TI  - Dynamics of System of Frequency-Phase Autofrequency Trim by Filters of the First Order
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 70
EP  - 81
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a6/
LA  - ru
ID  - VNGU_2011_11_1_a6
ER  - 
%0 Journal Article
%A S. S. Mamonov
%T Dynamics of System of Frequency-Phase Autofrequency Trim by Filters of the First Order
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 70-81
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a6/
%G ru
%F VNGU_2011_11_1_a6
S. S. Mamonov. Dynamics of System of Frequency-Phase Autofrequency Trim by Filters of the First Order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 1, pp. 70-81. http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a6/

[1] Shakhgildyan V. V., Lyakhovkin A. A., Sistemy fazovoi avtopodstroiki chastoty, Svyaz, M., 1972

[2] Kapranov M. V., Kuleshov V. N., Utkin G. M., Teoriya kolebanii v radiotekhnike, Nauka, M., 1984

[3] Shalfeev V. D., “K issledovaniyu nelineinoi sistemy chastotno-fazovoi avtopodstroiki chastoty s odinakovymi integriruyuschimi filtrami v fazovoi i chastotnoi tsepyakh”, Radiofizika, 12:7 (1969), 1037–1051

[4] Ponomarenko V. P., “Ob ustoichivosti sistemy chastotnoi avtopodstroiki s filtrom vtorogo poryadka”, Radiotekhnika i elektronika, 27:1 (1982), 113–116 | MR

[5] Ponomarenko V. P., Matrosov V. V., “Slozhnaya dinamika avtogeneratora, upravlyaemogo petlei chastotnoi avtopodstroiki”, Radiotekhnika i elektronika, 42:9 (1997), 1125–1133

[6] Leonov G. A., Tomaev A. M., Chshieva T. L., “Ustoichivost sistemy chastotno-fazovoi sinkhronizatsii”, Radiotekhnika i elektronika, 37:4 (1992), 671–679

[7] Leonov G. A., Burkin I. M., Shepelyavyi A. I., Chastotnye metody v teorii kolebanii, Izd-vo SPbGU, SPb., 1992 | Zbl

[8] Gelig A. Kh., Leonov G. A., Yakubovich V. A., Ustoichivost nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya, Nauka, M., 1978 | MR | Zbl

[9] Mamonov S. S., “Reshenie matrichnykh uravnenii”, Vest. Ryazan. gos. un-ta, 2009, no. 1/21, 115–136

[10] V. V. Shakhgildyan, L. N. Belyustina, Sistemy fazovoi sinkhronizatsii, Radio i svyaz, M., 1982