A Regularization Method for the Quasi-Stationary Maxwell Problem in an Inhomogeneous Conducting Medium
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 1, pp. 35-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the quasi-stationary Maxwell problem of defining a vector potential of a magnetic field with a non-standard gauging condition in an inhomogeneous conducting medium. The problem in question is the one with constraints on the right-hand side and on the solution itself. A generalized and regularized statement of this problem without constraints is proposed and substantiated. Such a problem statement is equivalent to the original generalized problem with constraints.
Keywords: quasistationary Maxwell's equations, vector potential, saddle point problem, regularization, discontinuous coefficients.
@article{VNGU_2011_11_1_a2,
     author = {I. A. Kremer and M. V. Urev},
     title = {A {Regularization} {Method} for the {Quasi-Stationary} {Maxwell} {Problem} in an {Inhomogeneous} {Conducting} {Medium}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {35--44},
     year = {2011},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a2/}
}
TY  - JOUR
AU  - I. A. Kremer
AU  - M. V. Urev
TI  - A Regularization Method for the Quasi-Stationary Maxwell Problem in an Inhomogeneous Conducting Medium
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 35
EP  - 44
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a2/
LA  - ru
ID  - VNGU_2011_11_1_a2
ER  - 
%0 Journal Article
%A I. A. Kremer
%A M. V. Urev
%T A Regularization Method for the Quasi-Stationary Maxwell Problem in an Inhomogeneous Conducting Medium
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 35-44
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a2/
%G ru
%F VNGU_2011_11_1_a2
I. A. Kremer; M. V. Urev. A Regularization Method for the Quasi-Stationary Maxwell Problem in an Inhomogeneous Conducting Medium. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 1, pp. 35-44. http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a2/

[1] Kalinin A. V., Kalinkina A. A., “Kvazistatsionarnye nachalno-kraevye zadachi dlya sistemy uravnenii Maksvella”, Vestnik NNGU. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2003, no. 26, 21–39

[2] Gudovich I. S., Krein S. G., Kulikov I. M., “Kraevye zadachi dlya uravnenii Maksvella”, Dokl. AN SSSR, 207:2 (1972), 321–324 | MR

[3] Ivanov M. I., Kateshov V. A., Kremer I. A., Urev M. V., “Reshenie trekhmernykh statsionarnykh zadach impulsnoi elektrorazvedki”, Avtometriya, 43:2 (2007), 22–32

[4] Ivanov M. I., Kateshov V. A., Kremer I. A., Urev M. V., “Reshenie trekhmernykh nestatsionarnykh zadach impulsnoi elektrorazvedki”, Avtometriya, 43:2 (2007), 33–44

[5] Kremer I. A., Urev M. V., “Metod regulyarizatsii statsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Sib. zhurn. vychisl. matem., 12:2 (2009), 161–170 | Zbl

[6] Kremer I. A., Urev M. V., “Reshenie metodom konechnykh elementov regulyarizirovannoi zadachi dlya statsionarnogo magnitnogo polya v neodnorodnoi provodyaschei srede”, Sib. zhurn. vychisl. matem., 13:1 (2010), 33–49 | Zbl

[7] Girault V., Raviart P.-A., Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986 | MR | Zbl

[8] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl

[10] Weyl H., “The Method of Orthogonal Projection in Potential Theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR

[11] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Nauka, M., 1978