@article{VNGU_2011_11_1_a2,
author = {I. A. Kremer and M. V. Urev},
title = {A {Regularization} {Method} for the {Quasi-Stationary} {Maxwell} {Problem} in an {Inhomogeneous} {Conducting} {Medium}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {35--44},
year = {2011},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a2/}
}
TY - JOUR AU - I. A. Kremer AU - M. V. Urev TI - A Regularization Method for the Quasi-Stationary Maxwell Problem in an Inhomogeneous Conducting Medium JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2011 SP - 35 EP - 44 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a2/ LA - ru ID - VNGU_2011_11_1_a2 ER -
%0 Journal Article %A I. A. Kremer %A M. V. Urev %T A Regularization Method for the Quasi-Stationary Maxwell Problem in an Inhomogeneous Conducting Medium %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2011 %P 35-44 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a2/ %G ru %F VNGU_2011_11_1_a2
I. A. Kremer; M. V. Urev. A Regularization Method for the Quasi-Stationary Maxwell Problem in an Inhomogeneous Conducting Medium. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 1, pp. 35-44. http://geodesic.mathdoc.fr/item/VNGU_2011_11_1_a2/
[1] Kalinin A. V., Kalinkina A. A., “Kvazistatsionarnye nachalno-kraevye zadachi dlya sistemy uravnenii Maksvella”, Vestnik NNGU. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2003, no. 26, 21–39
[2] Gudovich I. S., Krein S. G., Kulikov I. M., “Kraevye zadachi dlya uravnenii Maksvella”, Dokl. AN SSSR, 207:2 (1972), 321–324 | MR
[3] Ivanov M. I., Kateshov V. A., Kremer I. A., Urev M. V., “Reshenie trekhmernykh statsionarnykh zadach impulsnoi elektrorazvedki”, Avtometriya, 43:2 (2007), 22–32
[4] Ivanov M. I., Kateshov V. A., Kremer I. A., Urev M. V., “Reshenie trekhmernykh nestatsionarnykh zadach impulsnoi elektrorazvedki”, Avtometriya, 43:2 (2007), 33–44
[5] Kremer I. A., Urev M. V., “Metod regulyarizatsii statsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Sib. zhurn. vychisl. matem., 12:2 (2009), 161–170 | Zbl
[6] Kremer I. A., Urev M. V., “Reshenie metodom konechnykh elementov regulyarizirovannoi zadachi dlya statsionarnogo magnitnogo polya v neodnorodnoi provodyaschei srede”, Sib. zhurn. vychisl. matem., 13:1 (2010), 33–49 | Zbl
[7] Girault V., Raviart P.-A., Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986 | MR | Zbl
[8] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR
[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl
[10] Weyl H., “The Method of Orthogonal Projection in Potential Theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR
[11] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Nauka, M., 1978