Some Properties of Numberings in Various Levels in Ershov's Hierarchy
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 125-132
Cet article a éte moissonné depuis la source Math-Net.Ru
There was proved, that there no $\Delta^{-1}_{a}$-computable numbering of family of all $\Delta^{-1}_{a}$-sets, $a$ is constructive ordinal. Also there was proved, that there is minimal $\omega$-computable numbering of family of all sets from $\bigcup\limits_{k\in\omega}\Sigma_{k}^{-1}$.
Keywords:
computable numbering, friedberg numbering, Ershov's hierarchy.
@article{VNGU_2010_10_4_a8,
author = {S. S. Ospichev},
title = {Some {Properties} of {Numberings} in {Various} {Levels} in {Ershov's} {Hierarchy}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {125--132},
year = {2010},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a8/}
}
S. S. Ospichev. Some Properties of Numberings in Various Levels in Ershov's Hierarchy. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 125-132. http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a8/
[1] Ershov Yu. L., “Ob odnoi ierarkhii mnozhestv, III”, Algebra i logika, 9:1 (1970), 34–51 | MR | Zbl
[2] Goncharov S. S., Lempp S., Solomon D. R., “Friedberg Numberings of Families of $n$-Computably Enumerable Sets”, Algebra and Logic, 41:2 (2002), 81–86 | DOI | MR | Zbl
[3] Arslanov M. M., Ierarkhiya Ershova, Kazan, 2007
[4] Goncharov S. S., Sorbi A., “Obobschennye vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl