Some Properties of Numberings in Various Levels in Ershov's Hierarchy
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 125-132
Voir la notice de l'article provenant de la source Math-Net.Ru
There was proved, that there no $\Delta^{-1}_{a}$-computable numbering of family of all $\Delta^{-1}_{a}$-sets, $a$ is constructive ordinal. Also there was proved, that there is minimal $\omega$-computable numbering of family of all sets from $\bigcup\limits_{k\in\omega}\Sigma_{k}^{-1}$.
Keywords:
computable numbering, friedberg numbering, Ershov's hierarchy.
@article{VNGU_2010_10_4_a8,
author = {S. S. Ospichev},
title = {Some {Properties} of {Numberings} in {Various} {Levels} in {Ershov's} {Hierarchy}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {125--132},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a8/}
}
TY - JOUR AU - S. S. Ospichev TI - Some Properties of Numberings in Various Levels in Ershov's Hierarchy JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2010 SP - 125 EP - 132 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a8/ LA - ru ID - VNGU_2010_10_4_a8 ER -
S. S. Ospichev. Some Properties of Numberings in Various Levels in Ershov's Hierarchy. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 125-132. http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a8/