Some Properties of Numberings in Various Levels in Ershov's Hierarchy
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 125-132

Voir la notice de l'article provenant de la source Math-Net.Ru

There was proved, that there no $\Delta^{-1}_{a}$-computable numbering of family of all $\Delta^{-1}_{a}$-sets, $a$ is constructive ordinal. Also there was proved, that there is minimal $\omega$-computable numbering of family of all sets from $\bigcup\limits_{k\in\omega}\Sigma_{k}^{-1}$.
Keywords: computable numbering, friedberg numbering, Ershov's hierarchy.
@article{VNGU_2010_10_4_a8,
     author = {S. S. Ospichev},
     title = {Some {Properties} of {Numberings} in {Various} {Levels} in {Ershov's} {Hierarchy}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a8/}
}
TY  - JOUR
AU  - S. S. Ospichev
TI  - Some Properties of Numberings in Various Levels in Ershov's Hierarchy
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 125
EP  - 132
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a8/
LA  - ru
ID  - VNGU_2010_10_4_a8
ER  - 
%0 Journal Article
%A S. S. Ospichev
%T Some Properties of Numberings in Various Levels in Ershov's Hierarchy
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 125-132
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a8/
%G ru
%F VNGU_2010_10_4_a8
S. S. Ospichev. Some Properties of Numberings in Various Levels in Ershov's Hierarchy. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 125-132. http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a8/