An injective Borel measurable map preserving fixed cross-ratio up to complex conjugation is a M\"obius map
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 68-81

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents criterion for Möbius mappings in the complex plane: if an injective Borel measurable map preserves fixed cross-ratio $\lambda\notin \{0, 1, \infty\}$ up to complex conjugation, then it is a Möbius map.
Mots-clés : Moebius transformation, complex conjugation
Keywords: cross-ratio, linear-fractional map, extended complex plane, Borel measurability.
@article{VNGU_2010_10_4_a5,
     author = {T. A. Kergilova},
     title = {An injective {Borel} measurable map preserving fixed cross-ratio up to complex conjugation is a {M\"obius} map},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {68--81},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a5/}
}
TY  - JOUR
AU  - T. A. Kergilova
TI  - An injective Borel measurable map preserving fixed cross-ratio up to complex conjugation is a M\"obius map
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 68
EP  - 81
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a5/
LA  - ru
ID  - VNGU_2010_10_4_a5
ER  - 
%0 Journal Article
%A T. A. Kergilova
%T An injective Borel measurable map preserving fixed cross-ratio up to complex conjugation is a M\"obius map
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 68-81
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a5/
%G ru
%F VNGU_2010_10_4_a5
T. A. Kergilova. An injective Borel measurable map preserving fixed cross-ratio up to complex conjugation is a M\"obius map. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 68-81. http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a5/