An injective Borel measurable map preserving fixed cross-ratio up to complex conjugation is a M\"obius map
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 68-81
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents criterion for Möbius mappings in the complex plane: if an injective Borel measurable map preserves fixed cross-ratio $\lambda\notin \{0, 1, \infty\}$ up to complex conjugation, then it is a Möbius map.
Mots-clés :
Moebius transformation, complex conjugation
Keywords: cross-ratio, linear-fractional map, extended complex plane, Borel measurability.
Keywords: cross-ratio, linear-fractional map, extended complex plane, Borel measurability.
@article{VNGU_2010_10_4_a5,
author = {T. A. Kergilova},
title = {An injective {Borel} measurable map preserving fixed cross-ratio up to complex conjugation is a {M\"obius} map},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {68--81},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a5/}
}
TY - JOUR AU - T. A. Kergilova TI - An injective Borel measurable map preserving fixed cross-ratio up to complex conjugation is a M\"obius map JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2010 SP - 68 EP - 81 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a5/ LA - ru ID - VNGU_2010_10_4_a5 ER -
%0 Journal Article %A T. A. Kergilova %T An injective Borel measurable map preserving fixed cross-ratio up to complex conjugation is a M\"obius map %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2010 %P 68-81 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a5/ %G ru %F VNGU_2010_10_4_a5
T. A. Kergilova. An injective Borel measurable map preserving fixed cross-ratio up to complex conjugation is a M\"obius map. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 4, pp. 68-81. http://geodesic.mathdoc.fr/item/VNGU_2010_10_4_a5/