One Characterization of Absolute Retracts and its Applications~II
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 3, pp. 119-123
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove some propositions on topological caracterization of the spaces $Q$ and $l_2$, and describe some properties of the absolute (neighborhood) retracts. The proofs are based on the equality $ANR(\mathfrak{M})\cap AR_\epsilon(\mathfrak{M})=AR(\mathfrak{M})$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Absolute (neighborhood) retract, $Q$-manifold, $l_2$-manifold, $Z$-set
Mots-clés : $\epsilon$-retract.
                    
                  
                
                
                Mots-clés : $\epsilon$-retract.
@article{VNGU_2010_10_3_a8,
     author = {P. V. Chernikov},
     title = {One {Characterization} of {Absolute} {Retracts} and its {Applications~II}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {119--123},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a8/}
}
                      
                      
                    TY - JOUR AU - P. V. Chernikov TI - One Characterization of Absolute Retracts and its Applications~II JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2010 SP - 119 EP - 123 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a8/ LA - ru ID - VNGU_2010_10_3_a8 ER -
P. V. Chernikov. One Characterization of Absolute Retracts and its Applications~II. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 3, pp. 119-123. http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a8/
