Numerical Simulation of Shallow Water Flows on the Rotating Attractive Sphere
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 3, pp. 30-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive system conservation of laws for the equations of shallow water on the rotating attractive sphere (mass and total momentum). We construct exact stationary solution with a step profile of depth. These solutions are used for testing explicit two-layer on time difference scheme. We spent numerical simulation of evolution one-dimensional non-stationary discontinuous waves on rotating attractive sphere.
Keywords: conservation laws for shallow water equations on a rotating attractive sphere, discontinuous flow of boron type on a sphere, difference scheme, numerical simulation.
@article{VNGU_2010_10_3_a2,
     author = {A. V. Ivanova and V. V. Ostapenko and A. P. Chupakhin},
     title = {Numerical {Simulation} of {Shallow} {Water} {Flows} on the {Rotating} {Attractive} {Sphere}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {30--45},
     year = {2010},
     volume = {10},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a2/}
}
TY  - JOUR
AU  - A. V. Ivanova
AU  - V. V. Ostapenko
AU  - A. P. Chupakhin
TI  - Numerical Simulation of Shallow Water Flows on the Rotating Attractive Sphere
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 30
EP  - 45
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a2/
LA  - ru
ID  - VNGU_2010_10_3_a2
ER  - 
%0 Journal Article
%A A. V. Ivanova
%A V. V. Ostapenko
%A A. P. Chupakhin
%T Numerical Simulation of Shallow Water Flows on the Rotating Attractive Sphere
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 30-45
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a2/
%G ru
%F VNGU_2010_10_3_a2
A. V. Ivanova; V. V. Ostapenko; A. P. Chupakhin. Numerical Simulation of Shallow Water Flows on the Rotating Attractive Sphere. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 3, pp. 30-45. http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a2/

[1] Stoker Dzh. Dzh., Volny na vode, Izd-vo inostr. lit., M., 1959

[2] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[3] Pedloski Dzh., Geofizicheskaya gidrodinamika, v. 1, 2, Mir, M., 1984

[4] Diikstra Kh., Nelineinaya fizicheskaya okeanografiya, NITs Regulyarnaya i khaoticheskaya dinamika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2007

[5] Cherevko A. A., Chupakhin A. P., “Uravneniya modeli melkoi vody na vraschayuscheisya prityagivayuschei sfere. 1: Vyvod i obschie svoistva”, PMTF, 50:2 (2009), 37–45 | MR

[6] Cherevko A. A., Chupakhin A. P., “Uravneniya modeli melkoi vody na vraschayuscheisya prityagivayuschei sfere. 2: Prostye statsionarnye volny i zvukovye kharakteristiki”, PMTF, 50:3 (2009), 82–96 | MR

[7] Ostapenko V. V., Giperbolicheskie sistemy zakonov sokhraneniya i ikh prilozhenie k teorii melkoi vody, Novosibirsk, 2004

[8] Schacht W., Vorozhtsov E. V., Voevodin A. F., Ostapenko V. V., “Numerical Modeling of Hydraulic Jumps in a Spiral Channel with Rectangular Cross Section”, Fluid Dynamic Res., 31 (2002), 185–213 | DOI

[9] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[10] Ostapenko V. V., “O skhodimosti raznostnykh skhem za frontom nestatsionarnoi udarnoi volny”, Zhurn. vych. mat. i mat. fiz., 37:10 (1997), 1201–1212 | MR | Zbl

[11] Casper J., Carpenter M. N., “Computational Consideration for the Simulation of Shock-Induced Sound”, SIAM J. Sci. Comput., 19:1 (1998) | MR | Zbl

[12] Stanyukovich K. P., Neustanovivshiesya dvizheniya sploshnoi sredy, Nauka, M., 1971 | MR

[13] Patterson W., “A New Record of Climate Variability from Northern Labrador Revealed from Isotope Chemistry of Tree Rings”, Proc. Int. Conf. BOREAS (Rovaniemi, Finland, 28–31 October 2009), Invited