Stability of solutions to differential equations of neutral type
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 3, pp. 17-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we study stability of solutions to systems of quasi-linear delay differential equations of neutral type $$ \frac{d}{dt}(y(t) + Dy(t-\tau)) = Ay(t) + By(t-\tau) + F(t,y(t),y(t-\tau)), \quad t > \tau, $$ where $A$, $B$, $D$ are $n \times n$ numerical matrices, $\tau > 0$ is a delay parameter, $F(t,u,v)$ is a real-valued vector-function satisfying Lipschitz condition with respect to $u$ and $F(t,0,0) = 0$. Stability conditions of the zero solution to the systems are obtained, uniform estimates for the solutions on the half-axis $\{t>\tau\}$ are established. In the case of asymptotic stability these estimates give the decay rate of the solutions at infinity.
Keywords: quasi-linear differential equations of neutral type, asymptotic stability, uniform estimates for solutions, modified Lyapunov–Krasovskii functional.
Mots-clés : attraction domain
@article{VNGU_2010_10_3_a1,
     author = {G. V. Demidenko and T. V. Kotova and M. A. Skvortsova},
     title = {Stability of solutions to differential equations of neutral type},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {17--29},
     year = {2010},
     volume = {10},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a1/}
}
TY  - JOUR
AU  - G. V. Demidenko
AU  - T. V. Kotova
AU  - M. A. Skvortsova
TI  - Stability of solutions to differential equations of neutral type
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 17
EP  - 29
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a1/
LA  - ru
ID  - VNGU_2010_10_3_a1
ER  - 
%0 Journal Article
%A G. V. Demidenko
%A T. V. Kotova
%A M. A. Skvortsova
%T Stability of solutions to differential equations of neutral type
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 17-29
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a1/
%G ru
%F VNGU_2010_10_3_a1
G. V. Demidenko; T. V. Kotova; M. A. Skvortsova. Stability of solutions to differential equations of neutral type. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 3, pp. 17-29. http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a1/

[1] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[2] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[3] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[4] Korenevskii D. G., Ustoichivost dinamicheskikh sistem pri sluchainykh vozmuscheniyakh parametrov. Algebraicheskie kriterii, Naukova dumka, Kiev, 1989 | MR

[5] Gu K., Kharitonov V. L., Chen J., Stability of Time-Delay Systems. Control Engineering, Birkhäuser, Boston, MA, 2003 | Zbl

[6] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[7] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997

[8] Kharitonov V. L., Zhabko A. P., “Lyapunov–Krasovskii Approach to the Robust Stability Analysis of Time-Delay Systems”, Automatica, 39:1 (2003), 15–20 | DOI | MR | Zbl

[9] Kharitonov V. L., Hinrichsen D., “Exponential Estimates for Time Delay Systems”, Systems Control Lett., 53:5 (2004), 395–405 | DOI | MR | Zbl

[10] Mondié S., Kharitonov V. L., “Exponential Estimates for Retarded Time-Delay Systems: an LMI approach”, IEEE Trans. Automat. Control, 50:2 (2005), 268–273 | DOI | MR

[11] Kharitonov V., Mondié S., Collado J., “Exponential Estimates for Neutral Time-Delay Systems: an LMI approach”, IEEE Trans. Automat. Control, 50:5 (2005), 666–670 | DOI | MR

[12] Khusainov D. Ya., Ivanov A. F., Kozhametov A. T., “Otsenki skhodimosti reshenii lineinykh statsionarnykh sistem differentsialno-raznostnykh uravnenii s postoyannym zapazdyvaniem”, Dif. uravneniya, 41:8 (2005), 1137–1140 | MR | Zbl

[13] Demidenko G. V., Matveeva I. I., “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 5:3 (2005), 20–28 | MR | Zbl

[14] Demidenko G. V., Matveeva I. I., “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zhurn., 48:5 (2007), 1025–1040 | MR | Zbl

[15] Demidenko G. V., “Stability of Solutions to Linear Differential Equations of Neutral Type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl

[16] Melchor-Aguilar D., Niculescu S. I., “Estimates of the Attraction Region for a Class of Nonlinear Time-Delay Systems”, IMA J. Math. Control Inform., 24:4 (2007), 523–550 | DOI | MR | Zbl

[17] Martynyuk A. A., Gutovski R., Integralnye neravenstva i ustoichivost dvizheniya, Naukova dumka, Kiev, 1979 | MR