On Periodic Trajectories of Nonlinear Dynamical Systems of a Special Type
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 3, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a theorem on existence of cycles in phase portraits of odd-dimensional dynamical systems modeling functioning of gene networks regulated by negative feedbacks. We find sufficient conditions of existence of stable cycles there and describe some extensions of these results to other classes of the gene networks models.
Keywords: nonlinear dynamical systems, feedbacks, stationary points, symbolic dynamics, unimodal functions.
Mots-clés : invariant domains, cycles, transfer matrix
@article{VNGU_2010_10_3_a0,
     author = {V. P. Golubyatnikov and I. V. Golubyatnikov},
     title = {On {Periodic} {Trajectories} of {Nonlinear} {Dynamical} {Systems} of a {Special} {Type}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--16},
     year = {2010},
     volume = {10},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a0/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
AU  - I. V. Golubyatnikov
TI  - On Periodic Trajectories of Nonlinear Dynamical Systems of a Special Type
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 3
EP  - 16
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a0/
LA  - ru
ID  - VNGU_2010_10_3_a0
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%A I. V. Golubyatnikov
%T On Periodic Trajectories of Nonlinear Dynamical Systems of a Special Type
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 3-16
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a0/
%G ru
%F VNGU_2010_10_3_a0
V. P. Golubyatnikov; I. V. Golubyatnikov. On Periodic Trajectories of Nonlinear Dynamical Systems of a Special Type. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/VNGU_2010_10_3_a0/

[1] Gaidov Yu. A., Golubyatnikov V. P., “O nekotorykh nelineinykh dinamicheskikh sistemakh, modeliruyuschikh nesimmetrichnye gennye seti”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 7:2 (2007), 8–17

[2] Golubyatnikov V. P., Kleschev A. G., Klescheva K. A., Kudryavtseva A. V., “Issledovanie fazovykh portretov trekhmernykh modelei gennykh setei”, Sib. zhurn. industr. mat., 9:1 (2006), 75–84 | MR | Zbl

[3] Likhoshvai V. A., Golubyatnikov V. P., Demidenko G. V., Evdokimov A. A., Fadeev S. I., “Teoriya gennykh setei”, Sistemnaya kompyuternaya biologiya. Integratsionnye proekty, 14, eds. N. A. Kolchanov, S. S. Goncharov, SO RAN, Novosibirsk, 2008, 395–480

[4] Golubyatnikov V. P., Likhoshvai V. A., Volokitin E. P., Gaidov Yu. A., Osipov A. F., “Periodic Trajectories and Andronov–Hopf Bifurcations in Models of Gene Networks”, Bioinformatics of Genome Regulation and Structure, v. II, Springer Science+Business Inc., 2006, 405–414 | DOI

[5] Golubyatnikov V. P., Mjolsness E., Gaidov Yu. A., “Topological Index of the $p53-Mdm2$ Circuit”, Informatsionnyi vestnik Vavilovskogo obschestva genetikov i selektsionerov, 13:1 (2009), 160–162

[6] Golubyatnikov V. P., Gaidov Yu. A., Kleshchev A. G., Volokitin E. P., “Modeling of Asymmetric Gene Networks Functioning with Different Types of Regulation”, Biophysics, 51, suppl. 1 (2006), 61–65 | DOI

[7] Volokitin E. P., Treskov S. A., “Bifurkatsii Andronova–Khopfa v modeli gipoteticheskikh gennykh setei”, Sib. zhurn. industr. mat., 8:1 (2005), 30–40 | MR

[8] Gaidov Yu. A., “Ob ustoichivosti periodicheskikh traektorii v nekotorykh modelyakh gennykh setei”, Sib. zhurn. industr. mat., 11:1 (2008), 57–62 | MR | Zbl

[9] Gaidov Yu. A., Golubyatnikov V. P., Likhoshvai V. A., “O nekotorykh nelineinykh dinamicheskikh sistemakh, modeliruyuschikh nesimmetrichnye gennye seti, 2”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 10:1 (2010), 18–28 | MR

[10] Golubyatnikov V. P., Golubyatnikov I. V., “On Cycles in Boolean Models of Gene Networks with Negative Feedbacks”, Maltsevskie chteniya-2010, Tezisy mezhdunar. konf. (Novosibirsk, IM SO RAN, 2–6 Maya 2010), 55

[11] Mackey M. C., Glass L., “Oscillation and Chaos in Physiological Control Systems”, Science, 15:2 (1977), 287–289 | DOI

[12] Murray J. D., Mathematical Biology, v. 1, An introduction, $3^\text{rd}$ ed., Springer-Verlag, N.Y., 2002 | MR

[13] Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Zadachi teorii funktsionirovaniya gennykh setei”, Molekulyarnaya biologiya, 35:6 (2001), 926–932

[14] Smith R. A., “Certain Differential Equations Have Only Isolated Periodic Orbits”, Ann. Math. Pura Appl., 137:2 (1984), 217–244 | MR | Zbl

[15] Smith R. A., “Orbital Stability for Ordinary Differential Equations”, J. Differential Equations, 69 (1987), 265–287 | DOI | MR | Zbl

[16] Leonov G. A., “Ob ustoichivosti fazovykh sistem”, Sib. mat. zhurn., 15:1 (1974), 49–60 | Zbl

[17] Godunov S. K., Antonov A. G., Kirillyuk O. P., Kostin V. I., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Novosibirsk, 1992

[18] Kolesov A. Yu., Rozov N. Kh., Sadovnichii V. A., “Zhizn na kromke khaosa”, Tr. seminara im. I. G. Petrovskogo, 23, MGU, M., 2003, 219–266 | MR