Griffith's Formula and Cherepanov--Rice's Integral for a Plate with a Rigid Inclusion and a Crack
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 98-117
Voir la notice de l'article provenant de la source Math-Net.Ru
The model problem for a plate with rigid inclusion, describing a biharmonic equation, is considered. There is a crack between the inclusion and an elastic part of the plate. The derivative of the energy functional with respect to a small perturbation of the crack length is found. Moreover such derivative can be represented by an invariant integral. The derivative and the invariant integral are corresponding analogues of Griffith's formula and Cherepanov–Rice's integral in the brittle fracture theory.
Keywords:
plate, crack, rigid inclusion, Griffith's criteria, derivative of the energy functional, nonsmooth domain.
@article{VNGU_2010_10_2_a8,
author = {E. M. Rudoy},
title = {Griffith's {Formula} and {Cherepanov--Rice's} {Integral} for a {Plate} with a {Rigid} {Inclusion} and a {Crack}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {98--117},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a8/}
}
TY - JOUR AU - E. M. Rudoy TI - Griffith's Formula and Cherepanov--Rice's Integral for a Plate with a Rigid Inclusion and a Crack JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2010 SP - 98 EP - 117 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a8/ LA - ru ID - VNGU_2010_10_2_a8 ER -
%0 Journal Article %A E. M. Rudoy %T Griffith's Formula and Cherepanov--Rice's Integral for a Plate with a Rigid Inclusion and a Crack %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2010 %P 98-117 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a8/ %G ru %F VNGU_2010_10_2_a8
E. M. Rudoy. Griffith's Formula and Cherepanov--Rice's Integral for a Plate with a Rigid Inclusion and a Crack. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 98-117. http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a8/