Griffith's Formula and Cherepanov–Rice's Integral for a Plate with a Rigid Inclusion and a Crack
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 98-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The model problem for a plate with rigid inclusion, describing a biharmonic equation, is considered. There is a crack between the inclusion and an elastic part of the plate. The derivative of the energy functional with respect to a small perturbation of the crack length is found. Moreover such derivative can be represented by an invariant integral. The derivative and the invariant integral are corresponding analogues of Griffith's formula and Cherepanov–Rice's integral in the brittle fracture theory.
Keywords: plate, crack, rigid inclusion, Griffith's criteria, derivative of the energy functional, nonsmooth domain.
@article{VNGU_2010_10_2_a8,
     author = {E. M. Rudoy},
     title = {Griffith's {Formula} and {Cherepanov{\textendash}Rice's} {Integral} for a {Plate} with a {Rigid} {Inclusion} and a {Crack}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {98--117},
     year = {2010},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a8/}
}
TY  - JOUR
AU  - E. M. Rudoy
TI  - Griffith's Formula and Cherepanov–Rice's Integral for a Plate with a Rigid Inclusion and a Crack
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 98
EP  - 117
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a8/
LA  - ru
ID  - VNGU_2010_10_2_a8
ER  - 
%0 Journal Article
%A E. M. Rudoy
%T Griffith's Formula and Cherepanov–Rice's Integral for a Plate with a Rigid Inclusion and a Crack
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 98-117
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a8/
%G ru
%F VNGU_2010_10_2_a8
E. M. Rudoy. Griffith's Formula and Cherepanov–Rice's Integral for a Plate with a Rigid Inclusion and a Crack. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 98-117. http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a8/

[1] Parton V. Z., Morozov E. M., Mekhanika uprugo-plasticheskogo razrusheniya, Nauka, M., 1974

[2] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974 | Zbl

[3] Ohtsuka K., “Mathematics of Brittle Fracture”, Theoretical Studies on Fracture Mechanics in Japan, Hiroshima-Denki Inst. of Technol., Hiroshima, 1997, 99–172

[4] Nazarov S. A., Shpekovius-Noigerbauer M., “Primenenie energeticheskogo kriteriya razrusheniya dlya opredeleniya formy slaboiskrivlennoi treschiny”, Prikl. mekhanika i tekh. fizika, 47:5 (2006), 119–130 | MR | Zbl

[5] Cotterell B., Rice J. R., “Slightly Curved or Kinked Cracks”, Int. J. Fract., 16:2 (1980), 155–169 | DOI

[6] Amestoy M., Leblond J. B., “Crack Paths in Plane Situations. II: Detailed Form of the Expansion of the Stress Intensity Factors”, Int. J. Solids Structures, 29:4 (1992), 465–501 | DOI | MR | Zbl

[7] Leblond J. B., “Crack Paths in Three-dimensional Elastic Solids. I: Two-term Expansion of the Stress Intensity Factors — Application to Cracks Path Stability in Hydraulic Fracturing”, Int. J. Solids Structures, 36 (1999), 79–103 | DOI | MR | Zbl

[8] Leguillon D., “Asymptotic and Numerical Analysis of a Crack Branching in Non Isotropic Materials”, Eur. J. Mech., A/Solids, 12:1 (1993), 33–51 | MR | Zbl

[9] Gao H., Chiu Ch., “Slightly Curved or Kinked Cracks in Anisotropic Elastic Solids”, Int. J. Solids Structures, 29:8 (1992), 947–972 | DOI | Zbl

[10] Martin P. A., “Perturbed Cracks in Two-dimensions: An Integral-equation Approach”, Int. J. Fract., 104 (2000), 317–327 | DOI

[11] Rudoi E. M., “Differentsirovanie funktsionalov energii v zadache o krivolineinoi treschine s vozmozhnym kontaktom beregov”, Izvestiya RAN. Mekhanika tverdogo tela, 2007, no. 6, 113–127

[12] Khludnev A. M., Ohtsuka K., Sokolowski J., “On Derivative of Energy Functional for Elastic Bodies with Wracks and Unilateral Conditions”, Quart. Appl. Math., 60 (2002), 99–109 | MR | Zbl

[13] Kovtunenko V. A., “Primal-dual Methods of Shape Sensitivity Analysis for Curvilinear Cracks with Nonpenetration”, IMA J. Appl. Math., 71 (2006), 635–657 | DOI | MR | Zbl

[14] Rudoi E. M., “Differentsirovanie funktsionalov energii v trekhmernoi teorii uprugosti dlya tel, soderzhaschikh poverkhnostnye treschiny”, Sib. zhurn. industr. mat., 8:1 (2005), 106–116 | MR

[15] Rudoi E. M., “Asimptotika funktsionala energii dlya smeshannoi kraevoi zadachi chetvertogo poryadka v oblasti s razrezom”, Sib. mat. zhurn., 50:2 (2009), 430–445 | MR

[16] Friedman A., Hu B., Velazquez J., “The Evolution of Stress Intensity Factors and the Propagation of Cracks in Elastic Media”, Arch. Rational Mech. Anal., 152 (2000), 103–139 | DOI | MR | Zbl

[17] Friedman A., Hu B., Velazquez J. J. L., “Asimptotics for the Biharmonic Equation Near the Tip of a Crack”, Indiana Univ. Math. J., 47 (1998), 1327–1395 | MR | Zbl

[18] Rudoi E. M., “Invariantnye integraly dlya zadachi ravnovesiya plastiny s treschinoi”, Sib. mat. zhurn., 45:2 (2004), 466–477 | MR

[19] Rudoi E. M., “Asimptotika integrala energii pri vozmuschenii granitsy”, Sb. nauch. tr., Dinamika sploshnykh sred, 116, In-t gidrodinamiki SO RAN, 2000, 97–103 | MR

[20] Toya M., “A Crack along the Interface of a Rigid Circular Inclusion Embedded in an Elastic Solid”, Int. J. of Fracture, 9:4 (1973), 463–470

[21] Maiti M., “On the Extension of a Crack Due to Rigid Inclusions”, Int. J. of Fracture, 15 (1979), 389–393 | DOI

[22] Mossakovskii V. I., Rybka M. T., “Obobschenie kriteriya Griffitsa–Sneddona na sluchai neodnorodnogo tela”, PMM, 28:6 (1964), 1061–1069

[23] Xiao Z. M., Chen B. J., “Stress Intensity Factor for a Griffith Crack Interacting with a Coated Inclusion”, Int. J. of Fracture, 108 (2001), 193–205 | DOI

[24] Erdogan F., Gupta G. D., Ratwani M., “Int. between a Circular Inclusion and an Arbitrarily Oriented Crack”, ASME J. of Applied Mechanics, 41 (1974), 1007–1013 | DOI | Zbl

[25] Sendeckyj G. P., “Interaction of Cracks with Rigid Inclusions in Longitudinal Shear Deformation”, Int. J. of Fracture Mechanics, 101 (1974), 45–52 | DOI

[26] Nisitani H., Chen D. H., Saimoto A., “Interaction between an Elliptic Inclusion and a Crack”, Proc. of the Int. Conf. on Computer-Aided Assessment and Control, v. 4, Computational Mechanics Inc., MA, USA, 1996, 325–332

[27] Khludnev A. M., Zadacha o treschine na granitse zhestkogo vklyucheniya v uprugoi plastine, Preprint No 1-09, RAN. Sib. otd-nie. In-t gidrodinamiki, Novosibirsk, 2009

[28] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Ucheb. posobie, Nauka, M., 1981 | MR

[29] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[30] Browder F. E., “On the Regularity Properties of Solutions of Elliptic Differential Equations”, Comm. Pure Appl. Math., 9 (1956), 351–361 | DOI | MR | Zbl

[31] Koshelev A. I., “Apriornye otsenki v $L_p$ i obobschennye resheniya ellipticheskikh uravnenii i sistem”, UMN, 13:4 (1958), 29–88 | MR

[32] Khludnev A. M., Sokolowski J., “The Griffith Formula and the Rice-Cherepanov Integral for Crack Problems with Unilateral Conditions in Nonsmooth Domains”, Euro. J. Appl. Math., 10:4 (1999), 379–394 | DOI | MR | Zbl

[33] Khludnev A. M., “Teoriya treschin s vozmozhnym kontaktom beregov”, Uspekhi mekhaniki, 3:4 (2005), 41–82

[34] Berezhnitskii L. T., Panasyuk V. V., Staschuk N. G., Vzaimodeistvie zhestkikh lineinykh vklyuchenii i treschin v deformiruemom tele, Nauk. dumka, Kiev, 1983