Two Results for Automorphism Group of Partially Commutative Class Two Nilpotent Groups
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 85-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Gamma$ be a finite simle graph, $R$ be a binomial ring and $G_{\Gamma}$, be a partially commutative $R$-group of nilpotency class $2$ coresponded to graph $\Gamma$. In recent paper [1] "Structure of the automorphism group for partially commutative class two nilpotent groups" author jointly with V.N. Remeslennikov reduced the study of $Aut(G_{\Gamma})$ to the study of its unipotent part $UT(G_{\Gamma})$. In this paper we compute the nilpotency class for $UT(G_{\Gamma})$ and give generating set for $UT(G_{\Gamma})$. Moreover, we descibe generating set for $Aut(G_{\Gamma})$.
Keywords: partially commutative group, nilpotency, generating set, basis commutators, graph, unipotent subgroup, nilpotency step.
Mots-clés : automorphism, transvections
@article{VNGU_2010_10_2_a7,
     author = {A. V. Treyer},
     title = {Two {Results} for {Automorphism} {Group} of {Partially} {Commutative} {Class} {Two} {Nilpotent} {Groups}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {85--97},
     year = {2010},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a7/}
}
TY  - JOUR
AU  - A. V. Treyer
TI  - Two Results for Automorphism Group of Partially Commutative Class Two Nilpotent Groups
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 85
EP  - 97
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a7/
LA  - ru
ID  - VNGU_2010_10_2_a7
ER  - 
%0 Journal Article
%A A. V. Treyer
%T Two Results for Automorphism Group of Partially Commutative Class Two Nilpotent Groups
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 85-97
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a7/
%G ru
%F VNGU_2010_10_2_a7
A. V. Treyer. Two Results for Automorphism Group of Partially Commutative Class Two Nilpotent Groups. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 85-97. http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a7/

[1] Remeslennikov V. N., Treier A. V., “Struktura gruppy avtomorfizmov dlya chastichno kommutativnykh dvustupenno nilpotentnykh grupp”, Algebra i logika, 49:1 (2010), 60–97 | MR | Zbl

[2] Mischenko A. A., Treier A. V., “Grafy kommutativnosti dlya chastichno kommutativnykh dvustupenno nilpotentnykh $Q$-grupp”, Sibirskie elektronnye matematicheskie izvestiya, 2007, no. 4, 460–481 | MR

[3] Sib. Math. J., 5:23 (1982), 711–724 | MR | Zbl

[4] Hall P., “Nilpotent Groups”, Canad. Math. Congr. Summer. Sem., Univ. of Alberta, Edmonton, 1957 ; reprint, The Edmonton Notes on Nilpotent Groups, Queen Mary College, L., 1969 | Zbl | Zbl