Existance of Optimal Control in One Regularited Problem with Phase Distriction
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 71-84
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper there are considered the theorem of existing solution of system of differential equations that is the mathematical model of chemical reactor. There are carrying out normalization of functional and proving the theorem of existence of optimal controller in normalization problem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
optimal control, chemical reactor, functional, differential equations.
Mots-clés : existence solution
                    
                  
                
                
                Mots-clés : existence solution
@article{VNGU_2010_10_2_a6,
     author = {K. S. Musabekov},
     title = {Existance of {Optimal} {Control} in {One} {Regularited} {Problem} with {Phase} {Distriction}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a6/}
}
                      
                      
                    TY - JOUR AU - K. S. Musabekov TI - Existance of Optimal Control in One Regularited Problem with Phase Distriction JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2010 SP - 71 EP - 84 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a6/ LA - ru ID - VNGU_2010_10_2_a6 ER -
K. S. Musabekov. Existance of Optimal Control in One Regularited Problem with Phase Distriction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 71-84. http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a6/
