Scott Rank of Automatic Partial Orderings
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 37-44

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the main problems in the theory of automatic structures is the problem of characterization of automatic structures and subclasses of automatic structures. Scott ranks measure the complexity of the description of the isomorphism types of structures. M. Minnes and B. Khoussainov showed that for every ordinal $\alpha$ at most $\omega_1^{CK}+1$ there exists an automatic structure of Scott rank $\alpha$ [7;8]. In this paper we show that the same result holds for automatic partial orders.
Keywords: automatic structure, partial order, Scott rank.
@article{VNGU_2010_10_2_a2,
     author = {A. A. Gavryushkina},
     title = {Scott {Rank} of {Automatic} {Partial} {Orderings}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a2/}
}
TY  - JOUR
AU  - A. A. Gavryushkina
TI  - Scott Rank of Automatic Partial Orderings
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 37
EP  - 44
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a2/
LA  - ru
ID  - VNGU_2010_10_2_a2
ER  - 
%0 Journal Article
%A A. A. Gavryushkina
%T Scott Rank of Automatic Partial Orderings
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 37-44
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a2/
%G ru
%F VNGU_2010_10_2_a2
A. A. Gavryushkina. Scott Rank of Automatic Partial Orderings. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 37-44. http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a2/