Optimal Resource Consumption Control of Disturbed Dynamic Systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 3-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical method of solving a problem of resource consumption minimization for linear dynamic systems with disturbances is considered. The method is based on generating finite control moving for fixed time a linear system from any initial state to the desired final state and allowing the structure of optimal resource consumption control to be determined. A way of defining an initial approximation is given and an iterative algorithm of computing the optimal control is proposed. A system of linear algebraic equations is obtained that relates the increments of initial conditions of an adjoint system to the increments of phase coordinates concerning the desired final state. The computational algorithm is given. Local convergence is determined to take place at a quadratic rate and its radius is found. Computing process and a sequence of controls are proved to converge to optimal resource consumption control.
Keywords: optimal control, finite control, consumption of resources, linear system, phase trajectory, switching time, adjoint system, iteration
Mots-clés : variation, convergence.
@article{VNGU_2010_10_2_a0,
     author = {V. M. Aleksandrov},
     title = {Optimal {Resource} {Consumption} {Control} of {Disturbed} {Dynamic} {Systems}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--24},
     year = {2010},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a0/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Optimal Resource Consumption Control of Disturbed Dynamic Systems
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 3
EP  - 24
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a0/
LA  - ru
ID  - VNGU_2010_10_2_a0
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Optimal Resource Consumption Control of Disturbed Dynamic Systems
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 3-24
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a0/
%G ru
%F VNGU_2010_10_2_a0
V. M. Aleksandrov. Optimal Resource Consumption Control of Disturbed Dynamic Systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 2, pp. 3-24. http://geodesic.mathdoc.fr/item/VNGU_2010_10_2_a0/

[1] Atans M., Falb P., Optimalnoe upravlenie, Mashinostroenie, M., 1968

[2] Flugge-Lotz I., Marbach H., “The Optimal Control of Some Attitude Control Systems for Different Performace Criteria”, J. Basis Eng., 85 (1963), 165–176 | DOI

[3] Balakrishnan A. V., Neustadt L. W., Computing Methods in Optimization Problems, Academic Press Ins., N. Y., 1964 | MR | Zbl

[4] Ragab M. Z., “Time Fuel Optimal Deconpling Control Problem”, Adv. Model. Simul., 22:2 (1990), 1–16 | MR | Zbl

[5] Redmond J., Silverberg L., “Fuel Consumption in Optimal Control”, J. Guid. Control Dyn., 15:2 (1992), 424–430 | DOI | MR | Zbl

[6] Singh T., “Fuel/Time Optimal Control of the Benchmark Problem”, J. Guid. Control Dyn., 18:6 (1995), 1225–1231 | DOI | Zbl

[7] Sachs G., Dinkelmann M., “Reduction of Coolant Fuel Losses in Hypersonic Flight by Optimal Trajectory Control”, J. Guid. Control Dyn., 19:6 (1996), 1278–1284 | DOI | Zbl

[8] Ivanov V. A., Kozhevnikov S. A., “Odna zadacha sinteza optimalnogo po «raskhodu topliva» upravleniya lineinymi ob'ektami vtorogo poryadka s proizvodnymi upravleniya”, Izv. RAN. Teoriya i sistemy upravleniya, 1996, no. 4, 77–83 | Zbl

[9] Dewell L. D., Speyer J. L., “Fuel-Optimal Periodic Control and Regulation in Constrained Hypersonic Flight”, J. Guid. Control Dyn., 20:5 (1997), 923–932 | DOI | Zbl

[10] Liu S. W., Singh T., “Fuel/Time Optimal Control of Spacecraft Maneuvers”, J. Guid. Control Dyn., 20:2 (1997), 394–397 | DOI | Zbl

[11] Shevchenko G. V., “Metod nakhozhdeniya optimalnogo po minimumu raskhoda resursov upravleniya dlya ob'ektov spetsialnogo vida”, Avtometriya, 42:2 (2006), 49–67 | MR

[12] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[13] Aleksandrov V. M., “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurn. vych. mat. i mat. fiz., 38:6 (1998), 918–931 | MR | Zbl

[14] Aleksandrov V. M., “Priblizhennoe reshenie lineinoi zadachi na minimum raskhoda resursov”, Zhurn. vych. mat. i mat. fiz., 39:3 (1999), 418–430 | MR | Zbl