Conservation Laws of Zero Order for One-Dimensional Hydrodynamic Equations with External Force
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 1, pp. 70-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equation for the description of all laws of conservation of zero order is received for the one-dimensional hydrodynamic equations with external force in Euler variables. The force is dependent on independent and dependent variables, but does not contain their derivatives. Conservation laws are obtained for partial examples.
Keywords: zero order conservation laws, equations of hydrodynamics, external force.
@article{VNGU_2010_10_1_a5,
     author = {S. B. Medvedev},
     title = {Conservation {Laws} of {Zero} {Order} for {One-Dimensional} {Hydrodynamic} {Equations} with {External} {Force}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {70--88},
     year = {2010},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a5/}
}
TY  - JOUR
AU  - S. B. Medvedev
TI  - Conservation Laws of Zero Order for One-Dimensional Hydrodynamic Equations with External Force
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 70
EP  - 88
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a5/
LA  - ru
ID  - VNGU_2010_10_1_a5
ER  - 
%0 Journal Article
%A S. B. Medvedev
%T Conservation Laws of Zero Order for One-Dimensional Hydrodynamic Equations with External Force
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 70-88
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a5/
%G ru
%F VNGU_2010_10_1_a5
S. B. Medvedev. Conservation Laws of Zero Order for One-Dimensional Hydrodynamic Equations with External Force. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 1, pp. 70-88. http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a5/

[1] Voltsinger N. E., Klevannyi K. A., Pelinovskii E. N., Dlinnovolnovaya dinamika pribrezhnoi zony, Gidrometeoizdat, L., 1989

[2] Zhdanov S. K., Trubnikov B. A., Kvazigazovye neustoichivye sredy, Nauka, M., 1991 | Zbl

[3] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[4] Medvedev S. B., “Zakony sokhraneniya nulevogo poryadka dlya odnomernykh uravnenii vraschayuscheisya melkoi vody”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 8:1 (2008), 48–59

[5] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[6] Primenenie teoretiko-gruppovykh metodov v gidrodinamike, Nauka, M., 1994 | MR

[7] Simmetrii i zakony sokhraneniya matematicheskoi fiziki, Faktorial, M., 1997

[8] Stupachenko E. V., Losev S. A., Osipov A. I., Relaksatsionnye protsessy v udarnykh volnakh, Nauka, M., 1965

[9] Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[10] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1985 | MR

[11] Chirkunov Yu. A., Gruppovoi analiz lineinykh i kvazilineinykh differentsialnykh uravnenii, NGUEU, Novosibirsk, 2007

[12] Shmyglevskii Yu. D., Analiticheskie issledovaniya dinamiki gaza i zhidkosti, Editorial URSS, M., 1999

[13] Shepherd T. G., “Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics”, Adv. Geophys., 32 (1990), 287–338 | DOI