@article{VNGU_2010_10_1_a3,
author = {G. G. Lazareva},
title = {Contemporary {Numerical} {Models} in {Gravitational} {Gas} {Dynamics}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {40--64},
year = {2010},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a3/}
}
G. G. Lazareva. Contemporary Numerical Models in Gravitational Gas Dynamics. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 1, pp. 40-64. http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a3/
[1] Abakumov M. V., Mukhin S. I., Popov Yu. I., “O nekotorykh zadachakh gravitatsionnoi gazovoi dinamiki”, Mat. modelirovanie, 12:3 (2000), 110–120 | MR
[2] Antonenko M. N., Konyukhov A. V., Kraginskii L. M. i dr., “Primenenie universalnoi tekhnologii parallelnykh vychislenii v prostranstvennykh zadachakh fizicheskoi gazodinamiki i seismicheskogo modelirovaniya”, Mat. modelirovanie: problemy i rezultaty, Nauka, M., 2003, 169–198
[3] Belotserkovskii O. M., Davydov Yu. M., Metod krupnykh chastits v gazovoi dinamike, Nauka, M., 1982
[4] Bisikalo D. V., Boyarchuk A. A., Kaigorodov P. V. i dr., “Chislennoe modelirovanie perenosa veschestva v tesnykh dvoinykh zvezdakh na kompyuterakh s parallelnoi arkhitekturoi”, Mat. modelirovanie: problemy i rezultaty, Nauka, M., 2003, 71–94
[5] Vshivkov V. A., Lazareva G. G., Kulikov I. M., “Operatornyi podkhod dlya chislennogo modelirovaniya gravitatsionnykh zadach gazovoi dinamiki”, Vych. tekhnologii, 11:3 (2006), 27–35
[6] Vshivkov V. A., Lazareva G. G., Kulikov I. M., “Modifikatsiya metoda krupnykh chastits dlya zadach gravitatsionnoi gazovoi dinamiki”, Avtometriya, 11:3 (2007), 27–35 | MR | Zbl
[7] Godunov S. K. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[8] Dyachenko V. F., “Ob odnom novom metode chislennogo resheniya nestatsionarnykh zadach gazovoi dinamiki s dvumya prostranstvennymi peremennymi”, Zhurn. vych. mat. i mat. fiziki, 5:4 (1965), 680–688 | MR
[9] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[10] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1957
[11] Molorodov Yu. I., Khakimzyanov G. S., “Postroenie i otsenka kachestva regulyarnykh setok dlya dvumernykh oblastei”, Vopr. atomnoi nauki i tekhniki. Ser. Mat. modelirovanie fiz. protsessov, 1998, no. 1, 19–27 | MR
[12] Pavlenko O. N., Litvinenko I. A., “Modelirovanie trekhmernogo techeniya gaza metodom chastits na adaptivno-vstraivaemoi setke. Raschet zadachi o tochechnom vzryve”, Vopr. atomnoi nauki i tekhniki. Ser. Mat. modelirovanie fiz. protsessov, 2003, no. 4, 61–67
[13] Polyachenko V. L., Fridman A. M., Ravnovesie i ustoichivost gravitiruyuschikh sistem, Nauka, M., 1976
[14] Tarnavskii G. A., Aulchenko S. M., Vshivkov V. A., “Matematicheskoe modelirovanie nestatsionarnykh trekhmernykh protsessov v kosmicheskoi gazodinamike”, Vych. metody i programmirovanie, 4:2 (2003), 127–155
[15] Chetverushkin B. N., Kineticheski-soglasovannye skhemy v gazovoi dinamike, Izd-vo MGU, M., 1999
[16] Chetverushkin B. N., Tishkin V. F., “Primenenie vysokoproizvoditelnykh mnogoprotsessornykh vychislenii v gazovoi dinamike”, Mat. modelirovanie: problemy i rezultaty, Nauka, M., 2003, 123–168
[17] Shilnikov E. V., Shumkov M. A., “Modelirovanie trekhmernykh nestatsionarnykh techenii gaza na MVS s raspredelennoi pamyatyu”, Mat. modelirovanie, 13:4 (2001), 35–46 | Zbl
[18] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka. Sib. otd-nie, Novosibirsk, 1985
[19] Yanenko N. N., Shokin Yu. I., “O gruppovoi klassifikatsii raznostnykh skhem dlya sistemy uravnenii gazovoi dinamiki”, Tr. Mat. in-ta AN SSSR, 122, 1973, 85–97 | MR | Zbl
[20] Van Albada G. D., Van Leer B., Roberts W. W., “A Comparative Study of Computational Methods in Cosmic Gas Dynamics”, Astron. Astrophys., 108 (1982), 76–84 | Zbl
[21] Attwood R. E., Goodwin S. P., Whitworth A. P., “Adaptive Smoothing Length in SPH”, Astron. Astrophys., 464:2 (2007), 447–450 | DOI
[22] Barnes J. E., “Gas Dynamics in Galaxy Mergers”, Gas and Galaxy Evolution, ASP Conference Proceedings, 240, 2001, 135
[23] Bode P. W., Xu G., Cen R., “A Parallel Cosmological Hydrodynamics Code”, Proc. of the 1996 ACM/IEEE Conference on Supercomputing (Pittsburgh, Pennsylvania, United States), 1996, 12
[24] Boris J. P., Book D. L., “Flux-Corrected Transport. 1: SHASTA, a Fluid Transport Algorifm that Works”, J. Comput. Phys., 11 (1973), 38–69 | DOI | Zbl
[25] Brandenburg A., Dobler W., “Hydromagnetic Turbulence in Computer Simulations”, Comput. Phys. Comm., 147 (2002), 471–475 | DOI | Zbl
[26] Bromm V., Coppi P. S., Larson R. B., “Forming the First Stars in the Universe: The Fragmentation of Primordial Gas”, Astrophys. J., 527 (1999), L5–L8 | DOI
[27] Bryan G. L., Norman M. L., Stone J. M. et al., “A Piecewise Parabolic Method for Cosmological Hydrodynamics”, Comput. Phys. Comm., 89 (1995), 149 | DOI | Zbl
[28] Bryan G. L., Norman M. L., “A Hybrid AMR Application for Cosmology and Astrophysics”, Workshop on Structured Adaptive Mesh Refinement Grid Methods, 117 (1997), 165–170 | DOI
[29] Calder A. C., Fryxell B., Plewa T. et al., “On Validation an Asrophysical Simulation Code”, Astrophys. J. Suppl. Ser., 143 (2002), 201–230 | DOI
[30] Cen R., “A Hydrodynamic Approach to Cosmology — Methodology”, Astrophys. J. Suppl. Ser., 78 (1992), 341 | DOI
[31] Chakrabarti S. K., Molteni D., “Smoothed Particle Hydrodynamics Confronts Theory: Formation of Standing Shocks in Accretion Disks and Winds Around Black Holes”, Astrophys. J., 417 (1993), 671 | DOI
[32] Ciecielag P., Plewa T., Rozyczka M., “High-Resolution Simulations and Visualization of Protoplanetary Disks”, Proceedings of the Conference Disks, Planetesimals and Planets (Puerto de la Cruz, Tenerife, Spain. January $24^\text{th}$–$28^\text{th}$, 2000), ASP Conf. Series, eds. F. Garzon, C. Eiroa, D. de Winter, T. J. Mahoney
[33] Collela P., Woodward P. R., “The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations”, J. Comp. Phys., 54 (1984), 174–201 | DOI
[34] Couchman H. M. P., Thomas P. A., Pearce F. R., “Hydra: An Adaptive-Mesh Implementation of PPPM-SPH”, Astrophys. J., 452 (1995), 797–813 | DOI
[35] Dobler W., Stix M., Brandenburg A., “Convection and Magnetic Field Generation in Fully Convective Spheres”, Astrophys. J., 638 (2006), 336–347 | DOI
[36] Durisen R. H., Boss A. P., Mayer L. et al., “Gravitational Instabilities in Gaseous Protoplanetary Disks and Implications for Giant Planet Formation”, Protostars and Planets, v. V, eds. B. Reipurth, D. Jewitt, K. Keil, University of Arizona Press, Tucson, 2006
[37] Evrard A. E., “Beyond N-body — 3D Cosmological Gas Dynamics”, Monthly Notices Roy. Astronom. Soc., 235 (1988), 911 | Zbl
[38] Helly J. C., Cole S., Frenk C. S. et al., “A Comparison of Gas Dynamics in SPH and Semi-Analitic Models of Galaxy Formation”, Monthly Notices Roy. Astronom. Soc., 338:4 (2003), 913–925 | DOI
[39] Hernquist L., Katz N., “TREESPH: a Unification of SPH with the Hierarchical Tree Method”, Astrophys. J. Suppl. Ser., 70 (1989), 419–446 | DOI
[40] Hernquist L., Katz N., Weinberg D. H. et al., “The Lyman-Alpha Forest in the Cold Dark Matter Model”, Astrophys. J., 457 (1996), L51 | DOI
[41] Frenk C. S., White S. D. M., Bode P. et al., “The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions”, Astrophys. J., 525 (1999), 554 | DOI
[42] Fromang S., Papaloizou J., “Dust Settling in Local Simulations of Turbulent Planetary Disks”, Astron. Astrophys., 452 (2006), 751 | DOI
[43] Giallongo E., Menci N., Poli F. et al., “Comparing the Evolution of the Galaxy Disk Sizes with CDM Models: the Hubble Deep Field”, Astrophys. J., 530:2 (2000), L73–L76 | DOI
[44] Gingold R. A., Monaghan J. J., “SPH: Theory and Application to Non-Spherical Stars”, Monthly Notices Roy. Astronom. Soc., 181 (1977), 375–389 | Zbl
[45] Kang H., Cen R., Ostriker J. P., Ryu D., “Hot Gas In The CDM Scenario: X-Ray Clusters From A High Resolution Numerical Simulation”, Astrophys. J., 428 (1994), 1–16 | DOI
[46] Kifonidis K., Plewa T., Janka H.-Th., Muller E., “Nucleosynthesis and Clump Formation in a Core Collapse Supernova”, Astrophys. J., 531:2 (2000), L123–L126 | DOI
[47] Klypin A. A., Kates R. E., Khohlov A., “Galaxy Formation with Gravitation, Hydrodynamics and Active Star Formation”, Lect. Not. in Phys., 408, 1992, 157 | DOI
[48] Kochevsky A. N., Possibilities for Simulation Of Fluid Flows Using the Modern CFD Software Tools, Cornell Univ. Lib., 2004, arXiv: {http://arxiv.org/abs/physics/0409104}{0409104}
[49] Kravtsov A. V., Klypin A., Hoffman Y., “Constrained Simulations of the Real Universe. II: Observational Signatures of Intergalactic Gas in the Local Supercluster Region”, Astrophys. J., 571:2 (2002), 563–575 | DOI
[50] Kravtsov A. V., Nagai D., Vikhlinin A. A., “Effects of Cooling and Star Formation on the Baryon Fractions in Clusters”, Astrophys. J., 625 (2005), 588–598 | DOI
[51] Londrillo P., “Adaptive Grid-Based Gas-Dynamics and Poisson Solvers for Gravitating Systems”, Mem. S. A. It. Suppl., 4 (2004), 69
[52] Luci L. B., “A Numerical Approach to the Testing of the Fission Hypothesis”, Astronom. J., 82:12 (1977), 1013–1024 | DOI
[53] Marri S., White D. M., “Smoothed Particle Hydrodynamics for Galaxy Formation Simulations: Improved Treatments of Multiphase Gas, of Star Formation and of Supernovae Feedback”, Monthly Notices Roy. Astronom. Soc., 345:2 (2002), 561–574 | DOI
[54] Mignone A., Plewa T., Bodo G., “The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics”, Astrophys. J. Suppl. Ser., 160:1 (2005), 199–219 | DOI
[55] Miniati F., Colella P., “Block Structured Adaptive Mesh and Time Refinement for Hybrid, Hyperbolic + N-body Systems”, J. Comput. Phys., 227 (2007), 400–430 | DOI | MR | Zbl
[56] Moiseenko S. G., Bisnovatyi-Kogan G. S., Ardeljan N. V., “Magnetorotational Core Collapse Model with Jets”, Monthly Notices Roy. Astronom. Soc., 370 (2006), 501–512 | DOI
[57] Mohr J. J., Evrard A. E., “An X-ray Size-Temperature Relation for Galaxy Clusters: Observation and Simulation”, Astrophys. J., 491 (1997), 38 | DOI
[58] Molteni D., Lanzafame G., Chakrabarti S. K., “Simulation of Thick Accretion Disks with Standing Shocks by Smoothed Particle Hydrodynamics”, Astrophys. J., 425 (1994), 161 | DOI
[59] Molteni D., Ryu D., Chakrabarti S. K., “Numerical Simulations of Standing Shocks in Accretion Flows around Black Holes: A Comparative Study”, Astrophys. J., 470 (1996), 460 | DOI
[60] Nagamine K., Cen R., Hernquist L. et al., “Massive Galaxies in Cosmological Simulations: UV-Selected Sample at Redshift $z=2$”, Astrophys. J., 618:1 (2005), 23–37 | DOI
[61] Navarro J. F., White S. D. M., “Simulations of Dissipative Galaxy Formation in Hierarchical Clustering Universes. I: Tests of the Code”, Monthly Notices Roy. Astronom. Soc., 267 (1993), 401
[62] Norman M. L., “The Impact of AMR in Numerical Astrophysics and Cosmology”, Lecture Notes in Computational Science and Engineering, 41, 2005, 413–430 | DOI | Zbl
[63] O'Shea B. W., Nagamine K., Springel V. et al., “Comparing AMR and SPH Cosmological Simulations. I: Dark Matter and Adiabatic Simulations”, Astrophys. J. Suppl. Ser., 160:1 (2005), 1–27 | DOI
[64] O'Shea B., Bryan G., Bordner J. et al., “Introducing Enzo, an AMR Cosmology Application”, Adaptive Mesh Refinement: Theory and Applications, Springer Lecture Notes Comput. Sci. Engng., 2004, 134–142
[65] Owen J. M., Villumsen J. Vol., Shapiro P. R., Martel H., “Adaptive Smoothed Particle Hydrodynamics: Methodology, II”, Astrophys. J. Suppl. Ser., 116 (1998), 155 | DOI
[66] Pen U.-L., “A Linear Moving Adaptive Particle-Mesh N-Body Algorithm”, Astrophys. J., 100 (1995), 269 | DOI
[67] Pen U.-L., “A High-Resolution Adaptive Moving Mesh Hydrodynamic Algorithm”, Astrophys. J., 115 (1998), 19 | DOI | MR
[68] Plewa T., “Numerical Hydrodynamics: SPH vs AMR”, The Formation of Binary Stars, ASP Conference Series, 3, 2000, 563
[69] Ricker P. M., Calder A. C., Dursi L. J. et al., “Large-Scale Simulations of Clusters of Galaxies”, ACAT 2000, AIP Conf. Proc., 583, 2000, 316–318 | DOI
[70] Ryu D., Ostriker J. P., Kang H., Cen R., “A Cosmological Hydrodynamic Code Based on the Total Variation Dimishing Scheme”, Astrophys. J., 414:11 (1993), 464–470
[71] Ryu D., Brown G. L., Ostriker J. P., Loeb A., “Stable and Unstable Accretion Flows with Angular Momentum near a Point Mass”, Astrophys. J., 452 (1995), 364 | DOI
[72] Sales L. V., Navarro J. F., Abadi M. G., Steinmetz M., “Satellites of Simulated Galaxies: Survival, Merging, and their Relation to the Dark and Stellar Halos”, Monthly Notices Roy. Astronom. Soc., 379 (2007), 1464–1474 | DOI
[73] Sanders R. M., Prendergast K. H., “The Possible Relation of the 3-Kiloparsec Arm to Explosions in the Galactic Nucleus”, Astrophys. J., 188 (1974), 489 | DOI
[74] Sijacki D., Springel V., “Physical Viscosity in Smoothed Particle Hydrodynamics Simulations of Galaxy Clusters”, Monthly Notices Roy. Astronom. Soc., 371:3 (2006), 1025–1046 | DOI
[75] Springel V., Yoshida N., White S. D. M., “GADGET: A Code for Collisionless and Gasdynamical Cosmological Simulations”, New Astronom., 6:2 (2001), 79–117 | DOI
[76] Springel V., Hernquist L., “Cosmological SPH Simulations: The Entropy Equation”, Monthly Notices Roy. Astronom. Soc., 333:3 (2002), 649–664 | DOI
[77] Springel V., “The Cosmological Simulation Code GADGET, 2”, Monthly Notices Roy. Astronom. Soc., 364:4 (2006), 1105–1134 | DOI
[78] Springel V., Yoshida N., White S. D. M., “GADGET: A Code for Collisionless and Gasdynamical Cosmological Simulations”, New Astronom., 6:2 (2001), 79–117 | DOI
[79] Steinmetz M., “GRAPESPH: Cosmological SPH Simulations with the Special Purpose Hardware GRAPE”, Monthly Notices Roy. Astronom. Soc., 278 (1996), 1005 | DOI
[80] Stone J. M., Norman M. L., “ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. I: The Hydrodynamic Algorithms and Tests”, Astrophys. J. Suppl. Ser., 80 (1992), 753 | DOI
[81] Stone J. M., Norman M. L., “ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. II: The Magnetohydrodynamic Algorithms and Tests”, Astrophys. J. Suppl. Ser., 80 (1992), 791 | DOI
[82] Sornborger A., Fryxell B., Olson K. et al., An Eulerian PPM and PIC Code for Cosmological Hydrodynamics, Cornell Univ. Lib., 1996, 43 pp., arXiv: {http://arxiv.org/abs/astro-ph/9608019}{9608019}; Astrophys. J. Suppl. Ser.
[83] Teissier R., “Cosmological Hydrodynamics with Adaptive Mesh Refinement. A New High Resolution Code Called RAMSES”, Astronom. and Astrophys., 385 (2002), 337–364 | DOI
[84] Thacker R. J., Tittley E. R., Pearce F. R. et al., “Smoothed Particle Hydrodynamics in Cosmology: a Comparative Study of Implementation”, Monthly Notices Roy. Astronom. Soc., 319 (2000), 619
[85] Theuns T., Leonard A., Efstathiou G. P., Pearce F. R., Thomas P. A., “Hydra: an Adaptive-Mesh Implementation of SPH”, Monthly Notices Roy. Astronom. Soc., 301 (1998), 478–502 | DOI
[86] Timmes F. X., Zingale M., Olson K. et al., “On The Cellular Structure of Carbon Detonations”, Astrophys. J., 543 (2000), 938 | DOI
[87] Van Leer B., “Flux-Vector Splitting for the Euler Equations”, International Conference on Numerical Methods in Fluid Dynamics, $8^\text{th}$ (Aachen, West Germany, June 28–July 2, 1982), Springer-Verlag, Berlin, 507–512
[88] Viel M., Haehnelt M. G., Springel V., “Testing the Accuracy of the Hydro-PM Approximation in Numerical Simulations of the Lyman-$\alpha$ Forest”, Monthly Notices Roy. Astronom. Soc., 367:4 (2006), 1655–1665 | DOI
[89] Walder R., Folini D., “Radiative Cooling Instability in 1D Colliding Flows”, Astron. Astrophys., 315 (1996), 265–283
[90] Wadsley J. W., Bond J. R., “SPH P3MG Simulations of the Lyman-alpha Forest”, Proc. $12^\text{th}$ Kingston Conf. (Halifax, Oct. 1996), eds. D. Clarke, M. West, PASP, 1997
[91] Walder R., Folini D., “Complex Wind Dynamics and Ionization Structure in Symbiotic Binaries”, Thermal and Ionization Aspects of Flows from Hot Stars: Observations and Theory, ASP Conference Series, 2000
[92] Wadsley J. W., Stadel J., Quinn T., “Gasoline: An Adaptable Implementation of TreeSPH”, New Astronomy, 9 (2004), 137 | DOI | MR
[93] Yepes G., Kates R. E., Klypin A., Khohlov A., “Numerical Simulations in Cosmology. III: Hydrodynamics, Cooling and Supernovae Feedback”, Proc. of the $\text{XV}^\text{th}$ Recontres des Moriond “Clustering in Universe”, 1995, 209; “Dark Matter in the Universe, Italian Physical Society”, Proc. of the International School of Physics Course CXXXII (Varenna on Lake Como, Villa Monastero, 25 July – 4 August 1995), eds. S. Bonometto, J. R. Primack, A. Provenzale, IOS Press, Oxford, GB, 1996, 451
[94] Yepes G., Kates R. E., Klypin A. et al., “Mapping, Measuring, and Modelling the Universe”, Proc. of the UIPM-ECN Conf., Astronomical Society of the Pacific Conference Series, 94; Proc. of a Workshop (Valencia, Spain, 18–22 September 1995), eds. P. Coles, V. Martinez, M.-J. Pons-Borderia, Astronomical Society of the Pacific (ASP), San Francisco, 1996, 125
[95] Ziegler U., “NIRVANA+: An Adaptive Mesh Refinement Code for Gas Dynamics and MHD”, Comput. Phys. Comm., 109 (1998), 111 | DOI | Zbl
[96] Zingale M., Dursi L. J., ZuHone J. etc., “Mapping Initial Hydrostatic Models in Godunov Codes”, Astrophys. J. Suppl. Ser., 143:2 (2002), 539–565 | DOI