Solvability of Boundary Value Problems for Quasielliptic Systems in~Weighted Sobolev Spaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 1, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider boundary value problems for a class of quasielliptic systems in a half-space. The boundary value problems be assumed to satisfy the Lopatinskii condition. We establish unique solvability of the boundary value problems in weighted Sobolev spaces. We obtain sufficient solvability conditions for the boundary value problems and give an example when these solvability conditions are necessary.
Keywords: quasielliptic system, boundary value problem, Lopatinskii condition, weighted Sobolev space, solvability condition.
@article{VNGU_2010_10_1_a0,
     author = {L. N. Bondar},
     title = {Solvability of {Boundary} {Value} {Problems} for {Quasielliptic} {Systems} {in~Weighted} {Sobolev} {Spaces}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a0/}
}
TY  - JOUR
AU  - L. N. Bondar
TI  - Solvability of Boundary Value Problems for Quasielliptic Systems in~Weighted Sobolev Spaces
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2010
SP  - 3
EP  - 17
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a0/
LA  - ru
ID  - VNGU_2010_10_1_a0
ER  - 
%0 Journal Article
%A L. N. Bondar
%T Solvability of Boundary Value Problems for Quasielliptic Systems in~Weighted Sobolev Spaces
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2010
%P 3-17
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a0/
%G ru
%F VNGU_2010_10_1_a0
L. N. Bondar. Solvability of Boundary Value Problems for Quasielliptic Systems in~Weighted Sobolev Spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 10 (2010) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/VNGU_2010_10_1_a0/