@article{VNGU_2009_9_4_a8,
author = {V. N. Starovoitov and B. N. Starovoitova},
title = {Mathematical {Model} of {Dynamics} of an {Elastic} {Body} in a {Viscous} {Incompressible} {Fluid}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {76--89},
year = {2009},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a8/}
}
TY - JOUR AU - V. N. Starovoitov AU - B. N. Starovoitova TI - Mathematical Model of Dynamics of an Elastic Body in a Viscous Incompressible Fluid JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2009 SP - 76 EP - 89 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a8/ LA - ru ID - VNGU_2009_9_4_a8 ER -
%0 Journal Article %A V. N. Starovoitov %A B. N. Starovoitova %T Mathematical Model of Dynamics of an Elastic Body in a Viscous Incompressible Fluid %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2009 %P 76-89 %V 9 %N 4 %U http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a8/ %G ru %F VNGU_2009_9_4_a8
V. N. Starovoitov; B. N. Starovoitova. Mathematical Model of Dynamics of an Elastic Body in a Viscous Incompressible Fluid. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 76-89. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a8/
[1] Grandmont C., Maday Y., “Existence for Unsteady Fluid-Structure Interaction Problem”, Math. Model. Numer. Anal., 34 (2000), 609–636 | DOI | MR | Zbl
[2] Grandmont C., “Existence for a Three-Dimensional Steady State Fluid-Structure Interaction Problem”, J. Math. Fluid Mech., 4 (2002), 76–94 | DOI | MR | Zbl
[3] Chambolle A., Desjardins B., Esteban M. J., Grandmont C., “Existence of Weak Solutions for an Usteady Fluid–Plate Interaction Problem”, J. Math. Fluid Mech., 7 (2005), 368–404 | DOI | MR | Zbl
[4] H. Beirão da Veiga, “On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem”, J. Math. Fluid Mech., 6:1 (2004), 21–52 | DOI | MR | Zbl
[5] Desjardins B., Esteban M. J., Grandmont C., Le Tallec P., “Weak Solutions for a Fluid-Elastic Structure Interaction Model”, Rev. Mat. Complut., 14:2 (2001), 523–538 | MR | Zbl
[6] Boulakia M., “Existence of Weak Solutions for the Motion of an Elastic Structure in an Incompressible Viscous Fluid”, C. R. Acad. Sci. Paris, Ser. I, 336:12 (2003), 985–990 | DOI | MR | Zbl
[7] Boulakia M., “Existence of Weak Solutions for the Three-Dimensional Motion of an Elastic Structure in an Incompressible Fluid”, J. Math. Fluid Mech., 9 (2007), 262–294 | DOI | MR | Zbl
[8] Coutand D., Shkoller S., “Motion of an Elastic Solid Inside an Incompressible Viscous Fluid”, Arch. Ration. Mech. Anal., 176:1 (2005), 25–102 | DOI | MR | Zbl
[9] Syarle F., Matematicheskaya teoriya uprugosti, per. s angl., Mir, M., 1992
[10] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, per. s angl., Mir, M., 1975
[11] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, per. s fr., Mir, M., 1972 | MR
[12] Temam R., Matematicheskie zadachi teorii plastichnosti, per. s fr., Nauka, M., 1991 | MR | Zbl