Unilateral Contact of Elastic Plates to Rigid Inclusion
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 51-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the contact problem describing equilibrium of the elastic plates is considered (model Kirchhof–Love). The plates are located at a given angle to each other, are contacted along the line. The lower plate contains a rigid inclusion. Solubility of the state problem is established, and equivalence of two statements is proved. Boundary conditions fulfilled on the set of possible contact are found. It is established that the problem is a limiting one for a family of problems with an elastic inclusion when the parameter of a stiffness goes to infinity.
Keywords: contact problem, Kirchhoff–Love model, rigid inclusion.
@article{VNGU_2009_9_4_a5,
     author = {N. V. Neustroeva},
     title = {Unilateral {Contact} of {Elastic} {Plates} to {Rigid} {Inclusion}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {51--64},
     year = {2009},
     volume = {9},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a5/}
}
TY  - JOUR
AU  - N. V. Neustroeva
TI  - Unilateral Contact of Elastic Plates to Rigid Inclusion
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2009
SP  - 51
EP  - 64
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a5/
LA  - ru
ID  - VNGU_2009_9_4_a5
ER  - 
%0 Journal Article
%A N. V. Neustroeva
%T Unilateral Contact of Elastic Plates to Rigid Inclusion
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2009
%P 51-64
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a5/
%G ru
%F VNGU_2009_9_4_a5
N. V. Neustroeva. Unilateral Contact of Elastic Plates to Rigid Inclusion. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 51-64. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a5/

[1] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[2] Kravchuk A. S., “K zadache Gertsa dlya lineino i nelineino uprugikh tel konechnykh razmerov”, DAN SSSR, 230:2 (1976), 308–310 | MR | Zbl

[3] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verlag, Basel–Boston–Berlin, 1997 | MR | Zbl

[4] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[5] Caffarelli L. A., Friedman A., “The Obstacle Problem for the Biharmonic Operator”, Ann. Scuola Norm. Sup. Pisa. Ser. IV, 6:1 (1979), 151–184 | MR | Zbl

[6] Caffarelli L. A., Friedman A., Torelli A., “The Two-Obstacle Problem for the Biharmonic Operator”, Pacific J. Math., 103:2 (1982), 325–335 | DOI | MR | Zbl

[7] Schild B., “On the Coincidence Set in Biharmonic Variational Inequalities with Thin Obstacles”, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. IV. Ser. 13, 1986, no. 4, 559–616 | MR | Zbl

[8] Dal Maso G., Paderni G., “Variational Inequalities for the Biharmonic Operator with Varying Obstacles”, Ann. Mat. Pura Appl., 153 (1988), 203–227 | DOI | MR | Zbl

[9] Khludnev A. M., “Ob odnostoronnem kontakte dvukh plastin, raspolozhennykh pod uglom drug k drugu”, PMTF, 49:4 (2008), 42–58 | MR

[10] Khludnev A. M., Leugering G., “Unilateral Contact Problems for Two Perpendicular Elastic Structures”, J. for Analysis and its Applications, 27:2 (2008), 157–177 | MR | Zbl

[11] Khludnev A. M., Tani A., “Unilateral Contact Problem for Two Inclined Elastic Bodies”, European J. of Mechanics, A/Solids, 27:3 (2008), 365–377 | DOI | MR | Zbl

[12] Khludnev A. M., Khoffmann K.-Kh., Botkin N. D., “Variatsionnaya zadacha o kontakte uprugikh ob'ektov raznykh razmernostei”, Sib. mat. zhurn., 47:3 (2006), 707–717 | MR

[13] Neustroeva N. V., “Kontaktnaya zadacha dlya uprugikh tel raznykh razmernostei”, Vest. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 8:4 (2008), 60–75 | MR | Zbl

[14] Khludnev A. M., Zadacha o treschine na granitse zhestkogo vklyucheniya v uprugoi plastine, Prepr. No 1-2009, In-t gidrodinamiki SO RAN, Novosibirsk, 2009

[15] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[16] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl