Relaxations in Singularly Perturbed Planar Systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 45-50
Voir la notice de l'article provenant de la source Math-Net.Ru
The relaxation oscilations and canard-solutions are studied in
the system of singularly perturbed differential equations with one slow
and one fast variables. The analysis is based on using classical
mathematics, i.e., without elements of nonstandard analysis.
The sufficient condition is presented for the fact that the relaxational
oscillation is the limit position of the canard set as the repelling
part of the slow manifold tends to zero.
Mots-clés :
singular perturbations, relaxation oscilations, canard-solutions.
Keywords: slow and fast variables, slow surface
Keywords: slow and fast variables, slow surface
@article{VNGU_2009_9_4_a4,
author = {L. I. Kononenko},
title = {Relaxations in {Singularly} {Perturbed} {Planar} {Systems}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {45--50},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/}
}
L. I. Kononenko. Relaxations in Singularly Perturbed Planar Systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 45-50. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/