Relaxations in Singularly Perturbed Planar Systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 45-50

Voir la notice de l'article provenant de la source Math-Net.Ru

The relaxation oscilations and canard-solutions are studied in the system of singularly perturbed differential equations with one slow and one fast variables. The analysis is based on using classical mathematics, i.e., without elements of nonstandard analysis. The sufficient condition is presented for the fact that the relaxational oscillation is the limit position of the canard set as the repelling part of the slow manifold tends to zero.
Mots-clés : singular perturbations, relaxation oscilations, canard-solutions.
Keywords: slow and fast variables, slow surface
@article{VNGU_2009_9_4_a4,
     author = {L. I. Kononenko},
     title = {Relaxations in {Singularly} {Perturbed} {Planar} {Systems}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/}
}
TY  - JOUR
AU  - L. I. Kononenko
TI  - Relaxations in Singularly Perturbed Planar Systems
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2009
SP  - 45
EP  - 50
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/
LA  - ru
ID  - VNGU_2009_9_4_a4
ER  - 
%0 Journal Article
%A L. I. Kononenko
%T Relaxations in Singularly Perturbed Planar Systems
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2009
%P 45-50
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/
%G ru
%F VNGU_2009_9_4_a4
L. I. Kononenko. Relaxations in Singularly Perturbed Planar Systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 45-50. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/