Relaxations in Singularly Perturbed Planar Systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 45-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relaxation oscilations and canard-solutions are studied in the system of singularly perturbed differential equations with one slow and one fast variables. The analysis is based on using classical mathematics, i.e., without elements of nonstandard analysis. The sufficient condition is presented for the fact that the relaxational oscillation is the limit position of the canard set as the repelling part of the slow manifold tends to zero.
Mots-clés : singular perturbations, relaxation oscilations, canard-solutions.
Keywords: slow and fast variables, slow surface
@article{VNGU_2009_9_4_a4,
     author = {L. I. Kononenko},
     title = {Relaxations in {Singularly} {Perturbed} {Planar} {Systems}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {45--50},
     year = {2009},
     volume = {9},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/}
}
TY  - JOUR
AU  - L. I. Kononenko
TI  - Relaxations in Singularly Perturbed Planar Systems
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2009
SP  - 45
EP  - 50
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/
LA  - ru
ID  - VNGU_2009_9_4_a4
ER  - 
%0 Journal Article
%A L. I. Kononenko
%T Relaxations in Singularly Perturbed Planar Systems
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2009
%P 45-50
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/
%G ru
%F VNGU_2009_9_4_a4
L. I. Kononenko. Relaxations in Singularly Perturbed Planar Systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 45-50. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/

[1] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S. i dr., “Teoriya bifurkatsii”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1986, 5–218

[2] Van der Pol B., “On Relaxation Oscillations”, Phil. Mag. Ser. 7, 2:11 (1926), 978–992 | Zbl

[3] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[4] Callot J.–L., Diener F., Diener M., “Le Probléme de la «Chasse an Canard»”, C. R. Acad. Sci. Paris, sér. 1, 286:22 (1978), 1059–1061 | MR

[5] Benoit E., Callot J.-L., Diener F. et al., “Chasse au Canard”, Collectanea Mathematica, XXXII:1 (1981), 36–74

[6] Zvonkin A. K., Shubin M. A., “Nestandartnyi analiz i singulyarnye vozmuscheniya”, Uspekhi mat. nauk, 39:2(236) (1984), 77–127 | MR | Zbl

[7] Kononenko L. I., “Relaksatsionnye kolebaniya v singulyarnykh sistemakh s medlennymi i bystrymi peremennymi”, Sib. zhurn. industr. mat., 7:3(19) (2004), 102–110 | Zbl

[8] Shmolyan P., Wechselberg M., “Relaxation Oscillation in $\mathbb{R}^3$”, J. Diff. Eqs., 200:1 (2004), 69–104 | DOI

[9] Krupa M., Shmolyan P., “Relaxation Oscillations and Canard Explosion”, J. Diff. Eqs., 174 (2001), 312–368 | DOI | MR | Zbl

[10] Chen X., Yu P., Han M., Zhang W., “Canard Solutions of Two-Dimensional Singularly Perturbed Systems”, Chaos, Solitons and Fractals, 23 (2005), 915–927 | MR | Zbl

[11] Bobkova A. S., Kolesov A. Yu., Rozov N. Kh., “Problema «vyzhivaniya utok» v trekhmernykh singulyarno vozmuschennykh sistemakh s dvumya medlennymi peremennymi”, Mat. zametki, 71:6 (2002), 818–831 | DOI | MR | Zbl

[12] Sobolev V. A., Schepakina E. A., “Traektorii-utki v odnoi zadache teorii goreniya”, Dif. uravneniya, 32:9 (1996), 1175–1184 | MR | Zbl

[13] Sobolev V. A., Schepakina E. A., “Integralnye poverkhnosti so smenoi ustoichivosti i traektorii-utki”, Izv. RAEN. Ser. MMMIU, 1:3 (1997), 176–187

[14] Wechselberger M., “Canards”, Scholarpedia, 2:4 (2007), 1356 | DOI | MR

[15] Kononenko L. I., “Vliyanie formy integralnogo mnogoobraziya na vozniknovenie relaksatsionnykh kolebanii”, Sib. zhurn. industr. mat., 9:2(26) (2006), 75–80

[16] Bobkova A. S., “Traektorii-utki v mnogomernykh singulyarno vozmuschennykh sistemakh s odnoi bystroi peremennoi”, Dif. uravneniya, 40:10 (2004), 1305–1313 | MR | Zbl

[17] Goldshtein V. M., Kononenko L. I., Lazman M. Z., “Kachestvennyi analiz dinamicheskikh svoistv kataliticheskogo izotermicheskogo reaktora idealnogo smeshivaniya”, Matematicheskie problemy khimicheskoi kinetiki, Nauka, Novosibirsk, 1989, 176–204

[18] Schepakina E. A., “Singulyarno vozmuschennye modeli goreniya v mnogofaznykh sredakh”, Sib. zhurn. industr. mat., 6:4(16) (2003), 142–157 | Zbl

[19] Eckhaus W., “Relaxation Oscillations Including a Standard Chase on French Ducks”, Asymptotic Analysis, v. II, Lecture Notes in Mathematics, 985, Surveys and Trends, Springer, Berlin a.o., 1983, 449–497 | DOI | MR

[20] Chumakov G. A., Chumakova N. A., “Relaxation Oscillations in a Kinetic Model of Catalytic Hydrogen Oxidation Involving a Chase on Canards”, Chem. Eng. J., 91:2–3 (2003), 151–158 | DOI