Keywords: slow and fast variables, slow surface
@article{VNGU_2009_9_4_a4,
author = {L. I. Kononenko},
title = {Relaxations in {Singularly} {Perturbed} {Planar} {Systems}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {45--50},
year = {2009},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/}
}
L. I. Kononenko. Relaxations in Singularly Perturbed Planar Systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 45-50. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a4/
[1] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S. i dr., “Teoriya bifurkatsii”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1986, 5–218
[2] Van der Pol B., “On Relaxation Oscillations”, Phil. Mag. Ser. 7, 2:11 (1926), 978–992 | Zbl
[3] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR
[4] Callot J.–L., Diener F., Diener M., “Le Probléme de la «Chasse an Canard»”, C. R. Acad. Sci. Paris, sér. 1, 286:22 (1978), 1059–1061 | MR
[5] Benoit E., Callot J.-L., Diener F. et al., “Chasse au Canard”, Collectanea Mathematica, XXXII:1 (1981), 36–74
[6] Zvonkin A. K., Shubin M. A., “Nestandartnyi analiz i singulyarnye vozmuscheniya”, Uspekhi mat. nauk, 39:2(236) (1984), 77–127 | MR | Zbl
[7] Kononenko L. I., “Relaksatsionnye kolebaniya v singulyarnykh sistemakh s medlennymi i bystrymi peremennymi”, Sib. zhurn. industr. mat., 7:3(19) (2004), 102–110 | Zbl
[8] Shmolyan P., Wechselberg M., “Relaxation Oscillation in $\mathbb{R}^3$”, J. Diff. Eqs., 200:1 (2004), 69–104 | DOI
[9] Krupa M., Shmolyan P., “Relaxation Oscillations and Canard Explosion”, J. Diff. Eqs., 174 (2001), 312–368 | DOI | MR | Zbl
[10] Chen X., Yu P., Han M., Zhang W., “Canard Solutions of Two-Dimensional Singularly Perturbed Systems”, Chaos, Solitons and Fractals, 23 (2005), 915–927 | MR | Zbl
[11] Bobkova A. S., Kolesov A. Yu., Rozov N. Kh., “Problema «vyzhivaniya utok» v trekhmernykh singulyarno vozmuschennykh sistemakh s dvumya medlennymi peremennymi”, Mat. zametki, 71:6 (2002), 818–831 | DOI | MR | Zbl
[12] Sobolev V. A., Schepakina E. A., “Traektorii-utki v odnoi zadache teorii goreniya”, Dif. uravneniya, 32:9 (1996), 1175–1184 | MR | Zbl
[13] Sobolev V. A., Schepakina E. A., “Integralnye poverkhnosti so smenoi ustoichivosti i traektorii-utki”, Izv. RAEN. Ser. MMMIU, 1:3 (1997), 176–187
[14] Wechselberger M., “Canards”, Scholarpedia, 2:4 (2007), 1356 | DOI | MR
[15] Kononenko L. I., “Vliyanie formy integralnogo mnogoobraziya na vozniknovenie relaksatsionnykh kolebanii”, Sib. zhurn. industr. mat., 9:2(26) (2006), 75–80
[16] Bobkova A. S., “Traektorii-utki v mnogomernykh singulyarno vozmuschennykh sistemakh s odnoi bystroi peremennoi”, Dif. uravneniya, 40:10 (2004), 1305–1313 | MR | Zbl
[17] Goldshtein V. M., Kononenko L. I., Lazman M. Z., “Kachestvennyi analiz dinamicheskikh svoistv kataliticheskogo izotermicheskogo reaktora idealnogo smeshivaniya”, Matematicheskie problemy khimicheskoi kinetiki, Nauka, Novosibirsk, 1989, 176–204
[18] Schepakina E. A., “Singulyarno vozmuschennye modeli goreniya v mnogofaznykh sredakh”, Sib. zhurn. industr. mat., 6:4(16) (2003), 142–157 | Zbl
[19] Eckhaus W., “Relaxation Oscillations Including a Standard Chase on French Ducks”, Asymptotic Analysis, v. II, Lecture Notes in Mathematics, 985, Surveys and Trends, Springer, Berlin a.o., 1983, 449–497 | DOI | MR
[20] Chumakov G. A., Chumakova N. A., “Relaxation Oscillations in a Kinetic Model of Catalytic Hydrogen Oxidation Involving a Chase on Canards”, Chem. Eng. J., 91:2–3 (2003), 151–158 | DOI