Spherical Structures on $(p, q)$ Torus Knots
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 38-44
Voir la notice de l'article provenant de la source Math-Net.Ru
A family of cone-manifolds with spherical metric of $(p, q)$ torus knot type singularity was investigated. In case $p$ and $q$ are coprime one obtains a knot and otherwise one obtains a link with $\gcd(p, q)$ components. The domains of existence for spherical cone-metric wereobtained in terms of cone-angles and the analytical volume formulas were derived.
Keywords:
spherical geometry, cone-manifolds, torus knots and links.
@article{VNGU_2009_9_4_a3,
author = {A. A. Kolpakov},
title = {Spherical {Structures} on $(p, q)$ {Torus} {Knots}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {38--44},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/}
}
A. A. Kolpakov. Spherical Structures on $(p, q)$ Torus Knots. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 38-44. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/