Spherical Structures on $(p, q)$ Torus Knots
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 38-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of cone-manifolds with spherical metric of $(p, q)$ torus knot type singularity was investigated. In case $p$ and $q$ are coprime one obtains a knot and otherwise one obtains a link with $\gcd(p, q)$ components. The domains of existence for spherical cone-metric wereobtained in terms of cone-angles and the analytical volume formulas were derived.
Keywords: spherical geometry, cone-manifolds, torus knots and links.
@article{VNGU_2009_9_4_a3,
     author = {A. A. Kolpakov},
     title = {Spherical {Structures} on $(p, q)$ {Torus} {Knots}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {38--44},
     year = {2009},
     volume = {9},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/}
}
TY  - JOUR
AU  - A. A. Kolpakov
TI  - Spherical Structures on $(p, q)$ Torus Knots
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2009
SP  - 38
EP  - 44
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/
LA  - ru
ID  - VNGU_2009_9_4_a3
ER  - 
%0 Journal Article
%A A. A. Kolpakov
%T Spherical Structures on $(p, q)$ Torus Knots
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2009
%P 38-44
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/
%G ru
%F VNGU_2009_9_4_a3
A. A. Kolpakov. Spherical Structures on $(p, q)$ Torus Knots. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 38-44. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/

[1] Kolpakov A. A., Mednykh A. D., “Sfericheskie struktury na toricheskikh uzlakh i zatsepleniyakh”, Sib. mat. zhurn., 50:5 (2009), 1083–1096 | MR | Zbl

[2] Cooper D., Hodgson C., Kerckhoff S., Three-Dimensional Orbifolds and Cone-Manifolds, with a Postface by Sadayoshi Kojima, MSJ Memoirs, 5, Mathematical Society of Japan, Tokyo, 2000 | MR | Zbl

[3] Derevnin D., Mednykh A., Mulazzani M., “Geometry of Trefoil cone-manifold”, Beiträge zur Algebra und Geometrie, 2008 (to appear)

[4] Dunbar W. D., “Geometric Orbifolds”, Rev. Mat. Univ. Complut. Madrid, 1 (1988), 67–99 | MR | Zbl

[5] Hilden H. M., Lozano M. T., Montesinos-Amilibia J. M., “On a Remarkable Polyhedron Geometrizing the Figure Eight Cone Manifolds”, J. Math. Sci. Univ. Tokyo, 2 (1995), 501–561 | MR | Zbl

[6] Mednykh A., Rasskazov A., “Volumes and Degeneration of Cone-structures on the Figure-Eight Knot”, Tokyo J. of Math., 29:2 (2006), 445–464 | DOI | MR | Zbl

[7] Neumann W. P., “Notes on Geometry and 3-Manifolds”, with Appendix by Paul Norbury, Low Dimensional Topology, Bolyai Society Mathematical Studies, 8, eds. K. Böröczky, W. Neumann, A. Stipsicz, 1999, 191–267 | MR | Zbl

[8] Porti J., “Spherical Cone Structures on 2-Bridge Knots and Links”, Kobe J. of Math., 21:1 (2004), 61–70 | MR | Zbl

[9] Rolfsen D., Knots and Links, Publish or Perish Inc., Berkeley, 1976 | MR | Zbl

[10] Seifert H., Weber C., “Die Beiden Dodecaederräme”, Math. Z., 37 (1933), 237–253 | DOI | MR

[11] Thurston W. P., “Hyperbolic Geometry and 3-Manifolds”, London Math. Soc. Lect. Note Ser., 48, Cambridge Univ. Press, Cambridge, 1982, 9–25 | MR

[12] Thurston W. P., The Geometry and Topology of 3-Manifolds, Lecture Notes, Princeton, 1977–78