Spherical Structures on $(p, q)$ Torus Knots
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 38-44

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of cone-manifolds with spherical metric of $(p, q)$ torus knot type singularity was investigated. In case $p$ and $q$ are coprime one obtains a knot and otherwise one obtains a link with $\gcd(p, q)$ components. The domains of existence for spherical cone-metric wereobtained in terms of cone-angles and the analytical volume formulas were derived.
Keywords: spherical geometry, cone-manifolds, torus knots and links.
@article{VNGU_2009_9_4_a3,
     author = {A. A. Kolpakov},
     title = {Spherical {Structures} on $(p, q)$ {Torus} {Knots}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {38--44},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/}
}
TY  - JOUR
AU  - A. A. Kolpakov
TI  - Spherical Structures on $(p, q)$ Torus Knots
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2009
SP  - 38
EP  - 44
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/
LA  - ru
ID  - VNGU_2009_9_4_a3
ER  - 
%0 Journal Article
%A A. A. Kolpakov
%T Spherical Structures on $(p, q)$ Torus Knots
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2009
%P 38-44
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/
%G ru
%F VNGU_2009_9_4_a3
A. A. Kolpakov. Spherical Structures on $(p, q)$ Torus Knots. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 38-44. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a3/