The Theorem about Tensor Relation at any $N$-Dimential Pseudo-Riemannian Space
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 16-22

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered any $N $-dimential pseudo-Riemannian space $R^N_{P, N-P}$, with some second rank tensor $\Psi_{ik}(x)$. We established and proved important tensor relation such that second rank tensor and them invariants are satisfyed. We use the axial tensor of Levi–Chivita for proving these relation. It is shown that there are others useful tensor relations.
Keywords: pseudo-rimannian space, Levi–Chivita tensor, tensor relation, invariants of second rank tensor.
@article{VNGU_2009_9_4_a1,
     author = {P. A. Vshivtseva and I. P. Denisova and M. M. Denisov},
     title = {The {Theorem} about {Tensor} {Relation} at any $N${-Dimential} {Pseudo-Riemannian} {Space}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a1/}
}
TY  - JOUR
AU  - P. A. Vshivtseva
AU  - I. P. Denisova
AU  - M. M. Denisov
TI  - The Theorem about Tensor Relation at any $N$-Dimential Pseudo-Riemannian Space
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2009
SP  - 16
EP  - 22
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a1/
LA  - ru
ID  - VNGU_2009_9_4_a1
ER  - 
%0 Journal Article
%A P. A. Vshivtseva
%A I. P. Denisova
%A M. M. Denisov
%T The Theorem about Tensor Relation at any $N$-Dimential Pseudo-Riemannian Space
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2009
%P 16-22
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a1/
%G ru
%F VNGU_2009_9_4_a1
P. A. Vshivtseva; I. P. Denisova; M. M. Denisov. The Theorem about Tensor Relation at any $N$-Dimential Pseudo-Riemannian Space. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 4, pp. 16-22. http://geodesic.mathdoc.fr/item/VNGU_2009_9_4_a1/