On the Algebras Which Are Isomorphic of Any Nonempty Subalgebra
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 3, pp. 115-119
Cet article a éte moissonné depuis la source Math-Net.Ru
It is given the description of isomorphism types of up-semilattices of subalgebras of algebras which are isomorphic to the any its subalgebras.
@article{VNGU_2009_9_3_a7,
author = {A. G. Pinus},
title = {On the {Algebras} {Which} {Are} {Isomorphic} of {Any} {Nonempty} {Subalgebra}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {115--119},
year = {2009},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a7/}
}
A. G. Pinus. On the Algebras Which Are Isomorphic of Any Nonempty Subalgebra. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 3, pp. 115-119. http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a7/
[1] Andreka H., Netmeti I., “Symilarity Types, Pseudosimple Algebras and Congruence Representations of Chains”, Alg. Univ., 13:2 (1981), 293–306 | DOI | MR | Zbl
[2] Monk D., “On Pseudo-Simple Universal Algebras”, Proc. Amer. Math. Soc., 13:4 (1962), 543–546 | DOI | MR | Zbl
[3] Pinus A. G., Proizvodnye struktury universalnykh algebr, Izd-vo NGTU, Novosibirsk, 2007 | Zbl
[4] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970 | MR