The criteria of completeness for redefining boolean function
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 3, pp. 95-114
Cet article a éte moissonné depuis la source Math-Net.Ru
Boolean function with two kinds of indeterminateness are considered. Appropriat definition of superposition, closed classes is introduced and the criteria of completeness is proved.
@article{VNGU_2009_9_3_a6,
author = {V. I. Panteleyev},
title = {The criteria of completeness for redefining boolean function},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {95--114},
year = {2009},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a6/}
}
V. I. Panteleyev. The criteria of completeness for redefining boolean function. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 3, pp. 95-114. http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a6/
[1] Panteleev V. I., Peryazev N. A., “Nedoopredelennye chastichnye bulevy funktsii i bulevy uravneniya”, Diskretnye modeli v teorii upravlyayuschikh sistem, Materialy VII mezhdunarodnoi konferentsii, MAKS Press, M., 2006, 262–265
[2] Post E., “Introduction to a General Theory of Elementary Proposition”, Amer. J. Math., 43:4 (1921), 163–185 | DOI | MR | Zbl
[3] Freivald R. V., “O polnote chastichnykh funktsii algebry logiki”, DAN SSSR, 167:6 (1966), 1249–1250 | Zbl
[4] Tarasov V. V., “Kriterii polnoty dlya ne vsyudu opredelennykh funktsii algebry logiki”, Problemy kibernetiki, 30, Nauka, M., 1975, 319–325 | Zbl
[5] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000 | MR | Zbl