On properties of solutions to one system modeling a multistage substance synthesis
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 3, pp. 86-94

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for a system of ordinary differential equations modeling a multistage substance synthesis is considered. We study properties of the last component of its solution, describing the concentration of the synthesis product, as a function of the parameter $\tau$ characterizing the total time of the synthesis process. The continuous dependence on $\tau$ is established, estimates for the continuity module are obtained. We prove the uniform convergence as $\tau \to 0$; moreover, the limit function is a solution to the Cauchy problem for one ordinary differential equation.
@article{VNGU_2009_9_3_a5,
     author = {I. I. Matveeva and A. M. Popov},
     title = {On properties of solutions to one system modeling a multistage substance synthesis},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a5/}
}
TY  - JOUR
AU  - I. I. Matveeva
AU  - A. M. Popov
TI  - On properties of solutions to one system modeling a multistage substance synthesis
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2009
SP  - 86
EP  - 94
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a5/
LA  - ru
ID  - VNGU_2009_9_3_a5
ER  - 
%0 Journal Article
%A I. I. Matveeva
%A A. M. Popov
%T On properties of solutions to one system modeling a multistage substance synthesis
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2009
%P 86-94
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a5/
%G ru
%F VNGU_2009_9_3_a5
I. I. Matveeva; A. M. Popov. On properties of solutions to one system modeling a multistage substance synthesis. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 3, pp. 86-94. http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a5/