@article{VNGU_2009_9_3_a2,
author = {N. A. Kucher and D. A. Prokudin},
title = {Existence of {Weak} {Solutions} to the {First} {Boundary} {Value} {Problem} for {Equations} of {Mixtures} of {Compressible} {Viscous} {Fluids}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {33--53},
year = {2009},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a2/}
}
TY - JOUR AU - N. A. Kucher AU - D. A. Prokudin TI - Existence of Weak Solutions to the First Boundary Value Problem for Equations of Mixtures of Compressible Viscous Fluids JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2009 SP - 33 EP - 53 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a2/ LA - ru ID - VNGU_2009_9_3_a2 ER -
%0 Journal Article %A N. A. Kucher %A D. A. Prokudin %T Existence of Weak Solutions to the First Boundary Value Problem for Equations of Mixtures of Compressible Viscous Fluids %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2009 %P 33-53 %V 9 %N 3 %U http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a2/ %G ru %F VNGU_2009_9_3_a2
N. A. Kucher; D. A. Prokudin. Existence of Weak Solutions to the First Boundary Value Problem for Equations of Mixtures of Compressible Viscous Fluids. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 3, pp. 33-53. http://geodesic.mathdoc.fr/item/VNGU_2009_9_3_a2/
[1] Rajagopal K. R., Tao L., Mechanics of Mixtures, World Scientific, London, 1995 | MR
[2] Haupt P., Continuum Mechanics and Theory of Materials, Springer-Verlag, Berlin, 2000 | MR
[3] Frehse J., Goj S., Malek J., “On a Stokes-like System for Mixtures of Fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl
[4] Frehse J., Goj S., Malek J., “A Uniqueness Result for a Model for Mixtures in the Absence of External Forces and Interaction Momentum”, Appl. Math., 50:6 (2005), 527–541 | DOI | MR | Zbl
[5] Goj S., Analysis for Mixtures of Fluids, Dissertation, Universitat Bonn. Math. Inst., 2005 http://bib.math.uni-bonn.de/pdf2/BMS-375.pdf | Zbl
[6] Frehse J., Weigant W., On Quasi-Stationary Compressible Miscible Mixtures, Manuscript, 2004
[7] Kazhikhov A. V., Petrov A. N., “Korrektnost nachalno-kraevoi zadachi dlya modelnoi sistemy uravnenii mnogokomponentnoi smesi”, Dinamika sploshnoi sredy, 1978, no. 35, 61–73 | MR
[8] Zlotnik A. A., “Ravnomernye otsenki i stabilizatsiya reshenii sistemy uravnenii odnomernogo dvizheniya mnogokomponentnoi barotropnoi smesi”, Matematicheskie zametki, 58:2 (1995), 307–312 | MR | Zbl
[9] Feireisl E., Novotny A., Petzeltova H., “On the Existence of Globally Defined Weak Solutions to the Navier–Stokes Equations”, Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl
[10] Plotnikov P. I., Sokolovski Zh., “Statsionarnye resheniya uravnenii Nave–Stoksa dlya dvukhatomnykh gazov”, Uspekhi mat. nauk, 62:3(375) (2007), 117–148 | DOI | MR | Zbl
[11] Plotnikov P. I., Sokolowski J., “On Compactness, Domain Dependence and Existence of Steady State Solutions to Compressible Isothermal Navier–Stokes Equations”, Math. Fluid Mech., 7 (2005), 529–573 | DOI | MR | Zbl
[12] Doklady Akademii Nauk, 397 (2004), 1–6 | MR
[13] Plotnikov P. I., Sokolowski J., “Concentrations of Solutions to Time-Discretized Compressible Navier–Stokes Equations”, Comm. Math. Phys., 258 (2005), 567–608 | DOI | MR | Zbl
[14] Bogovskii M. E., “O reshenii nekotorykh zadach vektornogo analiza, svyazannykh s operatorami $\mathrm{div}$ i $\mathrm{grad}$”, Trudy seminara S. L. Soboleva, 1, In-t matematiki SO AN SSSR, Novosibirsk, 1980, 5–40 | Zbl
[15] Lions P.-L., Mathematical Topics in Fluid Mechanics, v. 1, Incompressible Models, Oxford University Press, N.Y., 1996 | MR | Zbl
[16] Lions P.-L., Mathematical Topics in Fluid Mechanics, v. 2, Compressible Models, Oxford University Press, N.Y., 1998 | MR
[17] Solonnikov V. A., “Ob obschikh kraevykh zadachakh dlya sistem ellipticheskikh uravnenii v smysle A. Duglisa–L. Nirenberga, II”, Tr. matematicheskogo in-ta im. V. A. Steklova, XCII, 1966, 233–297 | Zbl
[18] Sobolev S. L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989 | MR
[19] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR