On Constructive Models of Theories with Linear Rudin--Keisler Ordering
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 2, pp. 30-37
Voir la notice de l'article provenant de la source Math-Net.Ru
Syntactical characterisation of the class of Ehrenfeucht theories
was got in [1] by Sudoplatov. It was proved that one can set any
Ehrenfeucht theory by a finite pre-ordering (Rudin–Keisler pre-ordering)
and a function from this pre-ordering to the set of natural numbers as
parameters.
One of the main results of the paper is the next one. For all
$1\leqslant n\in\omega$ there exists an Ehrenfeucht theory $T_n$ such that
$RK(T_n)\cong L_n$, all quasi-prime models of $T_n$ have no computable
presentations, there exists computably presentable model of $T_n$.
[1] Sudoplatov, S. V., Complete Theories with Finitely Many Countable Models // Algebra and Logic. 2004. Vol. 43. No. 1. P. 62–69.
@article{VNGU_2009_9_2_a2,
author = {A. N. Gavryushkin},
title = {On {Constructive} {Models} of {Theories} with {Linear} {Rudin--Keisler} {Ordering}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {30--37},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_2_a2/}
}
TY - JOUR AU - A. N. Gavryushkin TI - On Constructive Models of Theories with Linear Rudin--Keisler Ordering JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2009 SP - 30 EP - 37 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2009_9_2_a2/ LA - ru ID - VNGU_2009_9_2_a2 ER -
A. N. Gavryushkin. On Constructive Models of Theories with Linear Rudin--Keisler Ordering. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 2, pp. 30-37. http://geodesic.mathdoc.fr/item/VNGU_2009_9_2_a2/