One Characterisation of Absolute Retracts and its Applications
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 1, pp. 69-72
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that $ANR(\mathfrak{M}) \cap AR_{\varepsilon} (\mathfrak{M}) = AR(\mathfrak{M})$ and some propositions related to the following problem: if $X$ is a metric compacta, does the condition $exp_2 X \in AR$ imply $X \in AR_\epsilon(\mathfrak{M})$.
			
            
            
            
          
        
      @article{VNGU_2009_9_1_a6,
     author = {P. V. Chernikov},
     title = {One {Characterisation} of {Absolute} {Retracts} and its {Applications}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_1_a6/}
}
                      
                      
                    P. V. Chernikov. One Characterisation of Absolute Retracts and its Applications. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 1, pp. 69-72. http://geodesic.mathdoc.fr/item/VNGU_2009_9_1_a6/
