The Variational Problem of the Unilateral Contact between an Elastic Plate and a Beam
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 1, pp. 45-56
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we consider an unilateral contact problem for a nonhomogeneous elastic plate and a thin elastic beam. A variational formulation is given and a complete system of boundary conditions is presented consisted of a system of equations and inequalities. When the beam crosses the external boundary, a family of problems given in an extended domain with a parameter is analyzed. The convergence of these problems' solutions to the original solution is shown as the parameter vanishes. We analyse the limit case corresponding to the unbounded increase of the bending rigidity of the beam.
@article{VNGU_2009_9_1_a4,
     author = {T. A. Stekina},
     title = {The {Variational} {Problem} of the {Unilateral} {Contact} between an {Elastic} {Plate} and a {Beam}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {45--56},
     year = {2009},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_1_a4/}
}
TY  - JOUR
AU  - T. A. Stekina
TI  - The Variational Problem of the Unilateral Contact between an Elastic Plate and a Beam
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2009
SP  - 45
EP  - 56
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2009_9_1_a4/
LA  - ru
ID  - VNGU_2009_9_1_a4
ER  - 
%0 Journal Article
%A T. A. Stekina
%T The Variational Problem of the Unilateral Contact between an Elastic Plate and a Beam
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2009
%P 45-56
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2009_9_1_a4/
%G ru
%F VNGU_2009_9_1_a4
T. A. Stekina. The Variational Problem of the Unilateral Contact between an Elastic Plate and a Beam. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 1, pp. 45-56. http://geodesic.mathdoc.fr/item/VNGU_2009_9_1_a4/

[1] Vabischevich P. N., Metod fiktivnykh oblastei v kraevykh zadachakh matematicheskoi fiziki, Izd-vo MGU, M., 1991

[2] Temam R., Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl

[3] Khludnev A. M., Khoffmann K. Kh., Botkin N. D., “Variatsionnaya zadacha o kontakte uprugikh ob'ektov raznykh razmernostei”, Sib. mat. zhurn., 43:6 (2006), 707–719

[4] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000