The Variational Problem of the Unilateral Contact between an Elastic Plate and a Beam
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 1, pp. 45-56
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper, we consider an unilateral contact problem for a nonhomogeneous elastic plate and a thin elastic beam. A variational formulation is given and a complete system of boundary conditions is presented consisted of a system of equations and inequalities. When the beam crosses the external boundary, a family of problems given in an extended domain with a parameter is analyzed. The convergence of these problems' solutions to the original solution is shown as the parameter vanishes. We analyse the limit case corresponding to the unbounded increase of the bending rigidity of the beam.
			
            
            
            
          
        
      @article{VNGU_2009_9_1_a4,
     author = {T. A. Stekina},
     title = {The {Variational} {Problem} of the {Unilateral} {Contact} between an {Elastic} {Plate} and a {Beam}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {45--56},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2009_9_1_a4/}
}
                      
                      
                    TY - JOUR AU - T. A. Stekina TI - The Variational Problem of the Unilateral Contact between an Elastic Plate and a Beam JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2009 SP - 45 EP - 56 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2009_9_1_a4/ LA - ru ID - VNGU_2009_9_1_a4 ER -
T. A. Stekina. The Variational Problem of the Unilateral Contact between an Elastic Plate and a Beam. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 9 (2009) no. 1, pp. 45-56. http://geodesic.mathdoc.fr/item/VNGU_2009_9_1_a4/
