Contact Problem for Elastic Bodies of Different Dimensions
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 4, pp. 60-75

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a variational problem describing a contact between an elastic plate and a thin elastic beam is investigated. It is assumed that the contact zone is a priori unknown and is to be defined. The given model is described by the energy functional minimization problem over a set of admissible displacements or by the equivalent variational inequality for the fourth order operator. Various formulations of problem and their equivalence are investigated. Boundary conditions, fulfilled on a set of possible contact and their exact interpretation are found.
@article{VNGU_2008_8_4_a6,
     author = {N. V. Neustroeva},
     title = {Contact {Problem} for {Elastic} {Bodies} of {Different} {Dimensions}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {60--75},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_4_a6/}
}
TY  - JOUR
AU  - N. V. Neustroeva
TI  - Contact Problem for Elastic Bodies of Different Dimensions
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 60
EP  - 75
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_4_a6/
LA  - ru
ID  - VNGU_2008_8_4_a6
ER  - 
%0 Journal Article
%A N. V. Neustroeva
%T Contact Problem for Elastic Bodies of Different Dimensions
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 60-75
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_4_a6/
%G ru
%F VNGU_2008_8_4_a6
N. V. Neustroeva. Contact Problem for Elastic Bodies of Different Dimensions. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 4, pp. 60-75. http://geodesic.mathdoc.fr/item/VNGU_2008_8_4_a6/