On an Example of Using the Sobolev Quadrature Formulas in Wavelet Theory
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 4, pp. 49-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that Zhamalov’s polynomials give rise to Battle–Lemarie wavelets of arbitrary order; moreover, the Franklin system is not the Battle–Lemarie wavelet of order 1. Symmetry of the scaling functions and wavelets of arbitrary order in the Battle–Lemarie construction is proven.
@article{VNGU_2008_8_4_a5,
     author = {E. V. Mishchenko},
     title = {On an {Example} of {Using} the {Sobolev} {Quadrature} {Formulas} in {Wavelet} {Theory}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {49--59},
     year = {2008},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_4_a5/}
}
TY  - JOUR
AU  - E. V. Mishchenko
TI  - On an Example of Using the Sobolev Quadrature Formulas in Wavelet Theory
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 49
EP  - 59
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_4_a5/
LA  - ru
ID  - VNGU_2008_8_4_a5
ER  - 
%0 Journal Article
%A E. V. Mishchenko
%T On an Example of Using the Sobolev Quadrature Formulas in Wavelet Theory
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 49-59
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_4_a5/
%G ru
%F VNGU_2008_8_4_a5
E. V. Mishchenko. On an Example of Using the Sobolev Quadrature Formulas in Wavelet Theory. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 4, pp. 49-59. http://geodesic.mathdoc.fr/item/VNGU_2008_8_4_a5/

[1] Bochkarëv S. V., Metod usrednenii v teorii ortogonalnykh ryadov i nekotorye voprosy teorii bazisov, Trudy Matematicheskogo instituta im. V. A. Steklova, CXLVI, Nauka, M., 1978 | MR | Zbl

[2] Dobeshi I., 10 lektsii po veivletam, RKhD, M.–Izhevsk, 2001

[3] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi nauki, M., 1958

[4] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974

[5] Chui K., Vvedenie v veivlety, Mir, M., 2001

[6] Ch. Blatter, Wavelets – Eine Einführung, Friedr. Vieweg Sohn Verlagsgesellschaft mhB, Braunschweig–Wiesbaden, 1998; Blatter K., Veivlet-analiz. Osnovy teorii, Tekhnosfera, M., 2004