On a characteristic of asymptotic stability of solutions to linear systems with periodic coefficients
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 3, pp. 60-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a characteristic of asymptotic stability of solutions to linear systems with periodic coefficients. We suggest a way for calculating this characteristic. Taking it as a principle we elaborated an algorithm for numerical investigation of asymptotic stability of zero solution to linear systems with periodic coefficients.
@article{VNGU_2008_8_3_a3,
     author = {Yu. Yu. Klevtsova},
     title = {On a characteristic of asymptotic stability of solutions to linear systems with periodic coefficients},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {60--80},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_3_a3/}
}
TY  - JOUR
AU  - Yu. Yu. Klevtsova
TI  - On a characteristic of asymptotic stability of solutions to linear systems with periodic coefficients
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 60
EP  - 80
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_3_a3/
LA  - ru
ID  - VNGU_2008_8_3_a3
ER  - 
%0 Journal Article
%A Yu. Yu. Klevtsova
%T On a characteristic of asymptotic stability of solutions to linear systems with periodic coefficients
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 60-80
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_3_a3/
%G ru
%F VNGU_2008_8_3_a3
Yu. Yu. Klevtsova. On a characteristic of asymptotic stability of solutions to linear systems with periodic coefficients. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 3, pp. 60-80. http://geodesic.mathdoc.fr/item/VNGU_2008_8_3_a3/