Optimal Control in Real Time by a Linear System with Disturbance
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 3, pp. 3-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of sequential synthesis of time optimal control by a linear system with unknown disturbance is considered. A system of linear algebraic equations is obtained that relays the increments of the phase coordinates to the increments of the initial conditions of the normalized adjoint system and that of the control completion time. The evaluations consist in solving repeatedly the system of linear algebraic equations and integrating the matrix differential equation on the displacement intervals of the control switching times and that of the final control time. A procedure of correcting the switching times and the completion time in moving the phase trajectory of the controlled object is examined. The simple and constructive conditions are obtained for: occurrence of discontinuous mode; moving the representative point along the switching manifolds; transformation of the optimal control structure in moving the phase trajectory of the system with uncontrollable disturbance. The computational algorithm is given. The sequence of controls is proved to converge locally, at a quadratic rate, and globally to time optimal control.
@article{VNGU_2008_8_3_a0,
     author = {V. M. Aleksandrov},
     title = {Optimal {Control} in {Real} {Time} by a {Linear} {System} with {Disturbance}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--25},
     year = {2008},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_3_a0/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Optimal Control in Real Time by a Linear System with Disturbance
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 3
EP  - 25
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_3_a0/
LA  - ru
ID  - VNGU_2008_8_3_a0
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Optimal Control in Real Time by a Linear System with Disturbance
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 3-25
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_3_a0/
%G ru
%F VNGU_2008_8_3_a0
V. M. Aleksandrov. Optimal Control in Real Time by a Linear System with Disturbance. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/VNGU_2008_8_3_a0/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[2] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[3] Dikusar V. V., Milyutin A. A., Kachestvennye i chislennye metody v printsipe maksimuma, Nauka, M., 1989 | MR | Zbl

[4] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[5] Dyurkovich E., “Chislennyi metod resheniya lineinykh zadach bystrodeistviya s otsenkoi tochnosti”, DAN, 265:4 (1982), 793–797 | MR | Zbl

[6] Kiselev Yu. N., “Bystroskhodyaschiesya algoritmy dlya lineinogo optimalnogo bystrodeistviya”, Kibernetika, 62:6 (1990), 47–57 | Zbl

[7] Shevchenko G. V., “Chislennyi algoritm resheniya lineinoi zadachi optimalnogo bystrodeistviya”, Zhurn. vych. mat. i mat. fiziki, 42:8 (2002), 1184–1196

[8] Hartl R. E., Sethi S. P., Vickson R. G., “A Servey of the Maxsimum Principle for Optimal Control Problems with State Constraints”, SIAM Review, 37 (1995), 181–218 | DOI | MR | Zbl

[9] Aleksandrov V. M., “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurn. vych. mat. i mat. fiziki, 38:6 (1998), 918–931 | MR | Zbl

[10] Aleksandrov V. M., “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya”, Zhurn. vych. mat. i mat. fiziki, 39:9 (1999), 1464–1478 | MR | Zbl

[11] Gabasov R., Kirillova F. M., Kostyukova O. I., “Optimizatsiya lineinoi sistemy upravleniya v rezhime realnogo vremeni”, Izv. RAN. Tekhnicheskaya kibernetika, 1992, no. 4, 3–19

[12] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurn. vych. mat. i mat. fiziki, 406 (2000), 838–859

[13] Gabasov R., Kirillova F. M., “Optimalnoe upravlenie v rezhime realnogo vremeni”, Vtoraya mezhdunarodnaya konferentsiya po problemam upravleniya, Plenarnye doklady (17–19 iyunya 2003 g.), IPU im. V. A. Trapeznikova RAN, M., 2003, 20–47

[14] Aleksandrov V. M., “Optimalnoe po bystrodeistviyu upravlenie v rezhime realnogo vremeni”, Tr. XIII Baikalskoi mezhdunar. shkoly-seminara, v. 2, Optimalnoe upravlenie, 2005, 57–63

[15] Aleksandrov V. M., “Optimalnoe po bystrodeistviyu upravlenie v realnom vremeni lineinymi sistemami”, III Mezhdunar. konf. po problemam upravleniya, Plenarnye doklady i izbrannye trudy, IPU RAN, M., 2006, 156–163

[16] Aleksandrov V. M., “Iteratsionnyi metod vychisleniya v realnom vremeni optimalnogo po bystrodeistviyu upravleniya”, Sib. zhurn. vych. mat., 10:1 (2007), 1–28