Effective Thermoviscoelasticity of a Saturated Porous Ground
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 105-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linearized model of reciprocal motion of an elastic porous body and a viscous compressible liquid in pores is considered, with the heat transfer effect being taken into account. It is assumed that the porous body has a periodic geometry and that the ratio of the pattern periodic cell and the diameter of the entire thermo-mechanical system is a small parameter in the model. The homogenization procedure, i.e. a limiting passage as the small parameter tends to zero, is fulfilled. As the result, we conclude that the limiting distributions of temperature and displacements of the media solve a well-posed initial-boundary value problem for the model of linear thermoviscoelasticity with memory of shape and heat. Moreover, coefficients of this newly constructed model arise from microstructure, more precisely; they are uniquely defined by data in the original model. Homogenization procedure is based on the method of two-scale convergence and is mathematically rigorously justified.
@article{VNGU_2008_8_2_a9,
     author = {S. A. Sazhenkov},
     title = {Effective {Thermoviscoelasticity} of a {Saturated} {Porous} {Ground}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {105--129},
     year = {2008},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a9/}
}
TY  - JOUR
AU  - S. A. Sazhenkov
TI  - Effective Thermoviscoelasticity of a Saturated Porous Ground
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 105
EP  - 129
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a9/
LA  - ru
ID  - VNGU_2008_8_2_a9
ER  - 
%0 Journal Article
%A S. A. Sazhenkov
%T Effective Thermoviscoelasticity of a Saturated Porous Ground
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 105-129
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a9/
%G ru
%F VNGU_2008_8_2_a9
S. A. Sazhenkov. Effective Thermoviscoelasticity of a Saturated Porous Ground. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 105-129. http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a9/

[1] P. Ya. Polubarinova-Kochina, S. N. Numerov, I. A. Charnyi i dr. (red.), Razvitie issledovanii po teorii filtratsii v SSSR (1917–1967), Nauka, M., 1969

[2] Burridge R., Keller J. B., “Poroelasticity Equations Derived from Microstructure”, J. Acoust. Soc. Am., 70:4 (1981), 1140–1146 | DOI | Zbl

[3] Coussy O., Poromechanics, John Wiley Sons, Chichester, 2004

[4] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984

[5] Bensoussan A., Lions J.-L., Papanicolau G., Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978 | MR

[6] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984

[7] Tartar L., “The Compensated Compactness Method Applied to System of Conservation Laws”, Systems of Nonlinear PDEs, NATO ASI Series C, 111, Reidel Publ. Comp., Dordrecht–Boston, 1983, 263–285 | MR

[8] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993

[9] Nguetseng G., “A General Convergence Result for a Functional Related to the Theory of Homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[10] Allaire G., “Homogenization and Two-scale Convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[11] U. Hornung (ed.), Homogenization and Porous Media, Springer-Verlag, N.Y., 1997 | MR

[12] Lukkassen D., Nguetseng G., Wall P., “Two-scale Convergence”, Int. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[13] Gilbert R. P., Mikelić A., “Homogenizing the Acoustic Properties of the Seabed, I”, Nonlinear Anal., 40 (2002), 185–212 | DOI | MR

[14] Meirmanov A. M., “Zakon Darsi v neizotermicheskikh poristykh sredakh”, Sibirskie elektronnye mat. izvestiya, 4 (2007), 141–154 | MR | Zbl

[15] Temam R. M., Miranville A. M., Mathematical Modelling in Continuum Mechanics, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[16] Zhermen P., Kurs mekhaniki sploshnykh sred, Vyssh. shk., M., 1983

[17] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[18] Meirmanov A. M., Sazhenkov S. A., “Generalized Solutions to Linearized Equations of Thermoelastic Solid and Viscous Thermofluid”, Electronic J. Diff. Equat., 2007:41 (2007), 1–29 | MR

[19] Zarubin V. S., Kuvyrkin G. N., Matematicheskie modeli termomekhaniki, Fizmatlit, M., 2002

[20] Clopeau T., Ferrin J. L., Gilbert R. P. et al., “Homogenizing the Acoustic Properties of the Seabed, II”, Math. Comp. Modelling, 33 (2001), 821–841 | DOI | MR | Zbl

[21] Buckingham M. J., “Seismic Wave Propagation in Rocks and Marine Sediments: a New Theoretical Approach”, Underwater Acoustics, v. 1, eds. E. A. Alippi, G. B. Cannelli, CNR-IDAC, Rome, 1998, 299–300

[22] O'Neil P. V., Advanced Engineering Mathematics, Brooks/Cole Publ. Co., Pacific Grove, USA, 1995

[23] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii. Preobrazovaniya Fure, Laplasa, Mellina, Nauka, M., 1968

[24] Reshetnyak Yu. G., Teoremy ustoichivosti v geometrii i analize, Nauka, Novosibirsk, 1982

[25] Dautray R., Lions J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, v. 5, Evolution problems I, Springer, Berlin, 2000

[26] Cioranescu D., Donato P., An Introduction to Homogenization, Oxford Univ. Press, Oxford, 1999 | MR | Zbl

[27] Weinan E., “Homogenization of Linear and Nonlinear Transport Equations”, Comm. Pure Appl. Math., 45 (1992), 301–326 | DOI | MR | Zbl