@article{VNGU_2008_8_2_a6,
author = {M. V. Korovina and O. V. Kudinov},
title = {The {Effectively} {Enumerable} {Topological} {Spaces}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {74--83},
year = {2008},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a6/}
}
M. V. Korovina; O. V. Kudinov. The Effectively Enumerable Topological Spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 74-83. http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a6/
[1] Abramsky S., Jung A., “Domain Theory”, Handbook of Logic in Computer Science, eds. S. Abramsky, D. Gabbay, T. S. E. Maibaum, Oxford Univ. Press, Oxford, 1994, 1–168 | MR
[2] Brattka V., Presser G., “Computability on Subsets of Metric Spaces”, Theor. Comput. Sci., 305:1–3 (2003), 43–76 | DOI | MR | Zbl
[3] Edalat A., Sönderhauf P., “A Domain-theoretic Approach to Real Number Computation”, Theor. Comput. Sci., 210 (1998), 73–98 | DOI | MR
[4] Ershov Yu. L., Numbering Theorey, Nauka, M., 1977 (in Russian) | MR
[5] Ershov Yu. L., “Model $\mathbb{C}$ of Partial Continuous Functionals”, Logic Colloquium, 76, North-Holland, Amsterdam, 1977, 455–467 | MR
[6] Gierz G., Hofmann K. H., Keimel K. et al., Continuous Lattices and Domains, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[7] Korovina M., Kudinov O., “The Uniformity Principle for $\Sigma$-definability with Applications to Computable Analysis”, CiE'07, Lecture Notes in Computer Science, 4497, eds. S. B. Cooper, B. Löwe, A. Sorbi, Springer, 2007, 416–425 | DOI | MR | Zbl
[8] Korovina M., Kudinov O., “Basic Principles of $\Sigma$-definability and Abstract Computability”, Fachbereich Mathematik, 2008, no. 08-01, 1–24
[9] Korovina M., Kudinov O., “Towards Computability of Higher Type Continuous Data”, CiE, Lecture Notes in Computer Science, 3526, eds. S. B. Cooper, B. Löwe, L. Torenvliet, Springer, 2005, 235–241 | DOI | Zbl
[10] Korovina M., Kudinov O., “Characteristic Properties of Majorant-Computability over the Reals”, CSL, Lecture Notes in Computer Science, 158, eds. G. Gottlob, E. Grandjean, K. Seyr, Springer, 1998, 188–203 | MR
[11] Moschovakis Y. N., “Recursive Metric Spaces”, Fund. Math., 55 (1964), 215–238 | MR | Zbl
[12] Myhill J., Shepherdson J. C., “Effective Operators on Partial Recursive Functions”, Zeitschrift fur Mathematische Logik Grundlagen def Mathematik, 1 (1955), 310–317 | DOI | MR | Zbl
[13] Rogers H. Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, N.Y., 1967 | MR | Zbl
[14] Scott D., “Outlines of Mathematical Theory of Computation”, Proc. $4^\textrm{th}$ Annual Princeton Conf. on Information Sciences and Systems, Princeton Univ. Press, Princeton, 1970, 169–176
[15] Spreen D., “On Effective Topological Spaces”, JSL, 63:1 (1998), 185–221 | MR | Zbl
[16] Spreen D., Young P., “Effective Operators in a Topological Setting”, Lecture Notes in Mathematics, 1104, 1984, 436–451 | MR
[17] Weihrauch K., Berechenbarkeit auf cpo's, Schriften zur Angewandten Mathematik und Informatik, 63, Aachen, 1980 | Zbl
[18] Weihrauch K., Computable Analysis, Springer Verlag, Berlin, 2000 | MR | Zbl
[19] Weierstrass K., Sitzungsber. Acad. Berlin, 633:9 (1885), 789–805