TE-wave Propagation Modeling in Nonuniform Waveguide by Vector Finite Element Method
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 54-66
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper considers applying vector finite element method to modeling of TE-waves propagation in optical fiber. Spurious modes are found in the obtained numerical solution. Analysis of analytical solution shows that spurious modes have nonzero $E_r$ component of electric field and don't conform to continuity condition of $\mathbf{H}$ field at the core–cladding interface.
@article{VNGU_2008_8_2_a4,
author = {A. A. Dolgun and M. P. Fedoruk and E. P. Shurina},
title = {TE-wave {Propagation} {Modeling} in {Nonuniform} {Waveguide} by {Vector} {Finite} {Element} {Method}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {54--66},
year = {2008},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a4/}
}
TY - JOUR AU - A. A. Dolgun AU - M. P. Fedoruk AU - E. P. Shurina TI - TE-wave Propagation Modeling in Nonuniform Waveguide by Vector Finite Element Method JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2008 SP - 54 EP - 66 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a4/ LA - ru ID - VNGU_2008_8_2_a4 ER -
%0 Journal Article %A A. A. Dolgun %A M. P. Fedoruk %A E. P. Shurina %T TE-wave Propagation Modeling in Nonuniform Waveguide by Vector Finite Element Method %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2008 %P 54-66 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a4/ %G ru %F VNGU_2008_8_2_a4
A. A. Dolgun; M. P. Fedoruk; E. P. Shurina. TE-wave Propagation Modeling in Nonuniform Waveguide by Vector Finite Element Method. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 54-66. http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a4/
[1] M. Yu. Balandin, E. P. Shurina, Vektornyi metod konechnykh elementov, Ucheb. posobie, NGTU, Novosibirsk, 2001
[2] B. Parlett, Simmetrichnaya problema sobstvennykh znachenii. Chislennye metody, Mir, M., 1983
[3] Dzh. Demmel, Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001
[4] J. A. Buck, Fundamentals of optical fibers, John Wiley Sons, N.Y., 1995 | Zbl
[5] R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK users' guide: solution of large scale eigenvalue problems with implicitly restarted arnoldi methods, 1997 | MR
[6] P. Arbenz, R. Geus, S. Adam, “Solving Maxwell eigenvalue problem for accelerating cavities”, Phys. Rev. ST Accel. Beams, 4:3 (2001)