Algorithmic Compexity of Countable Models of Strongly Minimal Theories
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 38-53

Voir la notice de l'article provenant de la source Math-Net.Ru

A positive solution of S. Lempp’s hypothesis is obtained. We’ve proved, that all countable models of strongly minimal models are computable with oracle $0^2$, if this theory has at least one computable model.
@article{VNGU_2008_8_2_a3,
     author = {S. S. Goncharov},
     title = {Algorithmic {Compexity} of {Countable} {Models} of {Strongly} {Minimal} {Theories}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {38--53},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a3/}
}
TY  - JOUR
AU  - S. S. Goncharov
TI  - Algorithmic Compexity of Countable Models of Strongly Minimal Theories
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 38
EP  - 53
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a3/
LA  - ru
ID  - VNGU_2008_8_2_a3
ER  - 
%0 Journal Article
%A S. S. Goncharov
%T Algorithmic Compexity of Countable Models of Strongly Minimal Theories
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 38-53
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a3/
%G ru
%F VNGU_2008_8_2_a3
S. S. Goncharov. Algorithmic Compexity of Countable Models of Strongly Minimal Theories. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 38-53. http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a3/