Algorithmic Compexity of Countable Models of Strongly Minimal Theories
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 38-53
Voir la notice de l'article provenant de la source Math-Net.Ru
A positive solution of S. Lempp’s hypothesis is obtained. We’ve proved, that all countable models of strongly minimal models are computable with oracle $0^2$, if this theory has at least one computable model.
@article{VNGU_2008_8_2_a3,
author = {S. S. Goncharov},
title = {Algorithmic {Compexity} of {Countable} {Models} of {Strongly} {Minimal} {Theories}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {38--53},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a3/}
}
TY - JOUR AU - S. S. Goncharov TI - Algorithmic Compexity of Countable Models of Strongly Minimal Theories JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2008 SP - 38 EP - 53 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a3/ LA - ru ID - VNGU_2008_8_2_a3 ER -
S. S. Goncharov. Algorithmic Compexity of Countable Models of Strongly Minimal Theories. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 38-53. http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a3/