Open maps and behavioural equivalences for timed stable event structures
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 14-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using methods of category theory, the paper introduces and investigates timed variants of partial-order based equivalence notions for concurrent and real-time processes represented by timed stable event structures. In particular, categories of the models under consideration are developed, and open maps based characterizations of timed variants of (Pratt trace, trace, testing and history hereditary preserving bisimulation) equivalences are provided.
@article{VNGU_2008_8_2_a1,
     author = {M. V. Andreeva},
     title = {Open maps and behavioural equivalences for timed stable event structures},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {14--29},
     year = {2008},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a1/}
}
TY  - JOUR
AU  - M. V. Andreeva
TI  - Open maps and behavioural equivalences for timed stable event structures
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 14
EP  - 29
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a1/
LA  - ru
ID  - VNGU_2008_8_2_a1
ER  - 
%0 Journal Article
%A M. V. Andreeva
%T Open maps and behavioural equivalences for timed stable event structures
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 14-29
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a1/
%G ru
%F VNGU_2008_8_2_a1
M. V. Andreeva. Open maps and behavioural equivalences for timed stable event structures. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 14-29. http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a1/

[1] Tsalenko M. Sh., Shulgeifer E. G., Lektsii po teorii kategorii, Nauka, M., 1974 | MR | Zbl

[2] Aceto L., “History Preserving, Causal and Mixed-Ordering Equivalence over Stable Event Structures”, Fundamenta Informaticae, 17:4 (1992), 319–331 | MR | Zbl

[3] Andreeva M. V., Virbitskaite I. B., “Observational Equivalences for Timed Stable Event Structures”, Fundamenta Informaticae, 72:1–3 (2006), 1–19 | MR | Zbl

[4] Boudol G., Castellani I., “Concurrency and Atomicity”, Theor. Comput. Sci., 59 (1989), 25–84 | DOI | MR

[5] Baier C., Katoen J.-P., Latella D., “Metric Semantics for True Concurrent Real Time”, Proc. 25$^\textrm{th}$ Int. Colloquium. ICALP'98 (Aalborg, Denmark, 1998), 568–579 | MR

[6] Bendarczyk M. A., Hereditory History Preserving Bisimulation or what is the Power of the Future Perfect in Program Logic, Tech. Report, Polish Academy of Science, Gdansk, 1991

[7] Cleaveland R., Hennessy M., “Testing Equivalence as a Bisimulation Equivalence”, Lect. Notes in Comput. Sci., 407, 1989, 11–23 | DOI

[8] Glabbeek R. J. van, “The Linear Time–Branching Time Spectrum II: the Semantics of Sequential Systems with Silent Moves. Extended abstract”, Lect. Notes in Comput. Sci., 715, 1993, 66–81 | DOI

[9] Glabbeek R. J. van, Goltz U., “Refinement of Actions and Equivalence Notions for Concurrent Systems”, Acta Informatica, 37 (2001), 229–327 | DOI | MR | Zbl

[10] Glabbeek R. J. van, “On the Expressiveness of Higher dimensional Automata”, Theor. Comput. Sci., 356:3 (2006), 265–290 | DOI | MR | Zbl

[11] Hoare C. A. R., Communicating Sequential Processes, Prentice-Hall, L., 1985 | MR

[12] Hune T., Nielsen M., “Timed Bisimulation and Open Maps”, Lect. Notes in Comput. Sci., 1450, 1998, 378–387 | DOI | MR

[13] Joyal A., Nielsen M., Winskel G., “Bisimulation from Open Maps”, Information and Computation, 127:2 (1996), 164–185 | DOI | MR | Zbl

[14] Langerak R., “Bundle Event Structures: a Non-interleaving Semantics for LOTOS. Formal Description Techniques, V”, IFIP Transactions, C-10 (1993), 331–346

[15] De Nicola R., Hennessy M., “Testing Equiavalence for Processes”, Theor. Comput. Sci., 34 (1984), 83–133 | DOI | MR | Zbl

[16] Nielsen M., Cheng A., “Observing Behaviour Categorically”, Lect. Notes in Comput. Sci., 1026, 1996, 263–278 | DOI | MR

[17] Park D., “Concurrency and Automata on Infinite Sequences”, Lect. Notes in Comput. Sci., 104, 1981, 167–183 | DOI | Zbl

[18] Pratt V. R., “Modeling Concurrency with Partial Orders”, Int. Journal of Parallel Programming, 15:1 (1986), 33–71 | DOI | MR | Zbl

[19] Virbitskaite I. B., Gribovskaya N. S., “Open Maps and Observational Equivalences for Timed Partial Order Models”, Fundamenta Informaticae, 60:1–4 (2004), 383–399 | MR | Zbl

[20] Winskel G., Events in Computation, PhD Thesis, University of Edinburgh, 1980

[21] Winskel G., “Event Structures”, Advances in Petri Nets, v. II, Lect. Notes in Comput. Sci., 255, 1987, 325–392 | DOI | MR | Zbl