On Solvability of Mixed Boundary Value Problem for Thermo-Electro-Elastic Body
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Accounting electro-conductivity in describing equilibrium problems for thermo-elastic bodies significantly complicates the mathematical model. In the paper, we prove an existence theorem to a mixed boundary value problem for a nonlinear model of a thermo-electro-elastic body.
@article{VNGU_2008_8_2_a0,
     author = {G. V. Alekseev and A. M. Khludnev},
     title = {On {Solvability} of {Mixed} {Boundary} {Value} {Problem} for {Thermo-Electro-Elastic} {Body}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--13},
     year = {2008},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a0/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - A. M. Khludnev
TI  - On Solvability of Mixed Boundary Value Problem for Thermo-Electro-Elastic Body
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 3
EP  - 13
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a0/
LA  - ru
ID  - VNGU_2008_8_2_a0
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A A. M. Khludnev
%T On Solvability of Mixed Boundary Value Problem for Thermo-Electro-Elastic Body
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 3-13
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a0/
%G ru
%F VNGU_2008_8_2_a0
G. V. Alekseev; A. M. Khludnev. On Solvability of Mixed Boundary Value Problem for Thermo-Electro-Elastic Body. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/VNGU_2008_8_2_a0/

[1] Antontsev S. N., Chipot M., “The Thermistor Problem: Existence, Smoothness, Uniqueness, Blowup”, SIAM J. Math. Anal., 25:4 (1994), 1128–1156 | DOI | MR | Zbl

[2] Boccardo L., Galluët T., “Non-linear Elliptic and Parabolic Equations Involving Measure Data”, J. Funct. Anal., 87 (1989), 149–169 | DOI | MR | Zbl

[3] Bossavit A., Rodrigues J.-F., “On the Electromagnetic “Induction Heating” Problem in Bounded Domains”, Adv. Math. Sci. Appl., 4 (1994), 79–92 | MR | Zbl

[4] Clain S., Analyse Mathématique et Numérique d'un Modèle de Chauffage par Induction, Thèse No 1240, EPFL, Lausanne, 1994

[5] Duderstadt F., Hoemberg D., Khludnev A. M., “A Mathematical Model for Impulse Resistance Welding”, Math. Meth. Appl. Sci., 26 (2003), 717–737 | DOI | MR | Zbl

[6] Hömberg D., Khludnev A. M., Sokolowski J., “Quasistationary Problem for a Cracked Body with Electrothermoconductivity”, Interfaces and Free Boundaries, 2001, no. 3, 129–142 | DOI | MR | Zbl

[7] Hömberg D., Khludnev A. M., “Equilibrium Problem for a Thermoelectroconductive Body with the Signorini Condition on the Boundary”, Math. Meth. Appl. Sci., 24 (2001), 233–244 | DOI | MR | Zbl

[8] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[9] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[10] Shi P., Shillor M., Xu X., “Existence of a Solution to the Stefan Problem with Joule's Heating”, J. Diff. Eqs., 105 (1993), 239–263 | DOI | MR | Zbl

[11] Simon J., “Compact Sets in the Space $L^p(0,T;B)$”, Annali Mat. Pura ed Appl., 146 (1987), 65–96 | DOI | MR | Zbl