Complexity of Index Sets for Several Classes of Models
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 1, pp. 71-76

Voir la notice de l'article provenant de la source Math-Net.Ru

When we study questions about computable characterization existence for different classes of models the approach suggested by Goncharov and Knight [1] is effective. It consists of obtaining precise estimations of index sets of such classes in corresponding hierarchy. For the universal numeration of computable models in non-trivial computable language there were found precise estimations of the following index sets of computable models classes: models with Ehrenfeucht theory ($\Pi^1_1$), models with a theory admitting infinitely many countable models ($\Sigma^1_1$).
@article{VNGU_2008_8_1_a6,
     author = {E. N. Pavlovsky},
     title = {Complexity of {Index} {Sets} for {Several} {Classes} of {Models}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {71--76},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a6/}
}
TY  - JOUR
AU  - E. N. Pavlovsky
TI  - Complexity of Index Sets for Several Classes of Models
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 71
EP  - 76
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a6/
LA  - ru
ID  - VNGU_2008_8_1_a6
ER  - 
%0 Journal Article
%A E. N. Pavlovsky
%T Complexity of Index Sets for Several Classes of Models
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 71-76
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a6/
%G ru
%F VNGU_2008_8_1_a6
E. N. Pavlovsky. Complexity of Index Sets for Several Classes of Models. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 1, pp. 71-76. http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a6/