Complexity of Index Sets for Several Classes of Models
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 1, pp. 71-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When we study questions about computable characterization existence for different classes of models the approach suggested by Goncharov and Knight [1] is effective. It consists of obtaining precise estimations of index sets of such classes in corresponding hierarchy. For the universal numeration of computable models in non-trivial computable language there were found precise estimations of the following index sets of computable models classes: models with Ehrenfeucht theory ($\Pi^1_1$), models with a theory admitting infinitely many countable models ($\Sigma^1_1$).
@article{VNGU_2008_8_1_a6,
     author = {E. N. Pavlovsky},
     title = {Complexity of {Index} {Sets} for {Several} {Classes} of {Models}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {71--76},
     year = {2008},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a6/}
}
TY  - JOUR
AU  - E. N. Pavlovsky
TI  - Complexity of Index Sets for Several Classes of Models
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 71
EP  - 76
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a6/
LA  - ru
ID  - VNGU_2008_8_1_a6
ER  - 
%0 Journal Article
%A E. N. Pavlovsky
%T Complexity of Index Sets for Several Classes of Models
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 71-76
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a6/
%G ru
%F VNGU_2008_8_1_a6
E. N. Pavlovsky. Complexity of Index Sets for Several Classes of Models. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 1, pp. 71-76. http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a6/

[1] Goncharov S. S., Nait Dzh., “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl

[2] Goncharov S. S., “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Algebra i logika, 19:6 (1980), 621–639 | MR | Zbl

[3] Sudoplatov S. V., “Polnye teorii s konechnym chislom schetnykh modelei, I”, Algebra i logika, 43:1 (2004), 110–124 | MR | Zbl

[4] Nurtazin A. T., Vychislimye klassy i algebraicheskie kriterii avtoustoichivosti, Dis. \ldots kand. fiz.-mat. nauk, AN Kazakhskoi SSR, In-t matematiki i mekhaniki. Lab. algebry i logiki, Alma-Ata, 1974

[5] Goncharov S. S., Ershov Yu. L., Konstruktivnye modeli, Nauchnaya kniga, Novosibirsk, 1999

[6] Lempp S., Slaman Th. A., “The Complexity of the Index Sets of $\aleph_0$-Categorical Theories and of Ehrenfeucht Theories”, Proc. of the North Texas Logic Conference (October 8–10, 2004)

[7] Sacks G. E., Higher Recursion Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990 | DOI | MR

[8] Ryll-Nardzewski C., “On the Categoricity in Power $\leqslant\!\aleph_0$”, Bull. Acad. Pol. Sci. Ser. Math., Astron., Phys., 7 (1959), 545–548 | MR | Zbl