Conservation laws of zero order for one-dimensional rotating shallow water equations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 1, pp. 59-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All conservation laws of the one-dimensional rotating shallow water equations are found. The Casimir functional with differentiation of any order for the Poisson bracket of the one-dimensional baroclinic fluid is constructed.
@article{VNGU_2008_8_1_a5,
     author = {S. B. Medvedev},
     title = {Conservation laws of zero order for one-dimensional rotating shallow water equations},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {59--70},
     year = {2008},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a5/}
}
TY  - JOUR
AU  - S. B. Medvedev
TI  - Conservation laws of zero order for one-dimensional rotating shallow water equations
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2008
SP  - 59
EP  - 70
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a5/
LA  - ru
ID  - VNGU_2008_8_1_a5
ER  - 
%0 Journal Article
%A S. B. Medvedev
%T Conservation laws of zero order for one-dimensional rotating shallow water equations
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2008
%P 59-70
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a5/
%G ru
%F VNGU_2008_8_1_a5
S. B. Medvedev. Conservation laws of zero order for one-dimensional rotating shallow water equations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 1, pp. 59-70. http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a5/

[1] Gill A., Dinamika atmosfery i okeana, Mir, M., 1986

[2] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kniga, Novosibirsk, 1998

[3] Gordin V. A., Matematicheskie zadachi gidrodinamicheskogo prognoza pogody. Analiticheskie aspekty, Gidrometeoizdat, L., 1987 | MR

[4] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[5] Kalyagin V. A., Stepanyants Yu. A., Metod Lyapunova–Arnolda v gidrodinamicheskoi teorii ustoichivosti, IPF, N. Novgorod, 1995

[6] Medvedev S. B., “Asimptoticheskaya normalnaya forma skobki Puassona dlya odnomernykh modelei zhidkosti”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 5:4 (2005), 3–12

[7] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[8] Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997

[9] Alinhac S., Blowup for Nonlinear Hyperbolic Equations, Birkhauser, Boston, 1995 | MR | Zbl

[10] Shepherd T. G., “Symmetries, Conservation Laws and Hamiltonian Structure in Geophysical Fluid Dynamics”, Adv. Geophys., 32 (1990), 287–338 | DOI

[11] Zeitlin V., Medvedev S., Plougoven R., “Frontal Geostrophic Adjustment Slow Manifold and Nonlinear Wave Phenomena in One-Dimensional Rotating Shallow Water. 1: Theory”, J. of Fluid Mechanics, 481 (2003), 269–290 | DOI | MR | Zbl