Solution of One Problem of Choice of Products by Means of Branch and Bound Method
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 1, pp. 38-50
Cet article a éte moissonné depuis la source Math-Net.Ru
In article the mixed-integer linear programming problem (with binary variables) is considered. This problem is NP-complete as generalizes knapsack problem. The new way of calculation of bounds in branch and bound method is offered. The way is based on transition to a dual problem in continuous variables and on known minimax theorems. The numerical example illustrates features of such approach.
@article{VNGU_2008_8_1_a3,
author = {R. M. Larin and E. V. Hmel},
title = {Solution of {One} {Problem} of {Choice} of {Products} by {Means} of {Branch} and {Bound} {Method}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {38--50},
year = {2008},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a3/}
}
TY - JOUR AU - R. M. Larin AU - E. V. Hmel TI - Solution of One Problem of Choice of Products by Means of Branch and Bound Method JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2008 SP - 38 EP - 50 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a3/ LA - ru ID - VNGU_2008_8_1_a3 ER -
R. M. Larin; E. V. Hmel. Solution of One Problem of Choice of Products by Means of Branch and Bound Method. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 8 (2008) no. 1, pp. 38-50. http://geodesic.mathdoc.fr/item/VNGU_2008_8_1_a3/
[1] Beresnev V. A., Gimadi E. Kh., Dementev V. T., Ekstremalnye zadachi standartizatsii, Nauka, Novosibirsk, 1978
[2] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972
[3] Kovalev M. M., Diskretnaya optimizatsiya, BGU, Minsk, 1977
[4] Glebov N. I., Kochetov Yu. A., Plyasunov A. V., Metody optimizatsii, NGU, Novosibirsk, 2000
[5] Erzin A. I., Vvedenie v issledovanie operatsii, NGU, Novosibirsk, 2000